Это уравнение всегда является квадратным относительно переменной х, а значит, максимум может быть два корня. Здесь это и требуется.
Ситуация, когда один корень равен другому, даже если этот корень 0, не подходит. На это есть ограничение D>0
По теореме Виета мы должны получить, что сумма корней равна 0, а их произведение всегда меньше 0.
Тогда получается, что
из этой системки (из 1-го уравнения) получаем, что m=0 или m=4, но из второго условия (неравенства) явно получаем, что m<1 и поэтому m=4 не годится. Осталось лишь ограничение D>0. Можно, конечно, было бы сказать, что при одном корне знак произведения всегда неотрицателен, а когда 0 корней, то вообще говорить не о чем. Пути 2: либо проверить само значение m=0, либо проверить D>0, например, если бы таких значений было бесконечно много.
Почему вообще это надо делать: теорема Виета работает прекрасно в любом квадратном уравнении. И вообще у уравнения n-ой степени (ограничимся здесь лишь обычными многочленами) всегда n корней по следствию из основной теоремы алгебры, правда, корни эти комплексные (множество действительных чисел является подмножеством комплексных чисел), так что у квадратного уравнения, на самом деле, всегда 2 корня, но не забивайте себе этим голову, просто примите к сведению, что D>0 здесь тоже надо бы проверить (а проще гораздо проверить само m=0)
Для того чтобы найти, на каких промежутках D>0, надо решить уравнение сначала D=0. Но там 4 страшных корня, 2 из которых действительные и нужны нам. Так что, как показывает практика, в эти дебри лучше не лезть. Но ради интереса я прикреплю картинки с формулами этих чисел. При подстановке m=0 D=12>0, что подходит.
И ещё раз повторю, что некоторые сведения были даны, чтобы понять, что в математике все не просто так и иногда какие-то вещи на самом деле гораздо более глубокие, чем мы думаем.
количество вариантов будет 24, т. к. это перестановка 4 команд по 4 местам, а это факториал: 4! = 4*3*2 = 24. На первое место будут претендовать 4 команды, на второе уже 3, на третье - 2, а на четвертое - 1. У тебя цифры 3, 5, 7, 9. Т. е. их, получается, 4. В трёхзначных числах цифры могут повторяться (ну оно понятно, система-то позиционная). Юзаем комбинаторный принцип умножения. Цифр четыре, позиций три, значит ответ = 4*4*4 = 64. Раз номер первый нечетный, то последняя должна быть четной т. е. только 314 т. к. 143 первой быть не может. 86 страниц получается. Всего шаров = 2 + 3 = 5 Черных шаров = 2 Вероятность вытащить черный шар = 2/5 Вероятность того, что второй шар будет тоже черным = (2-1)/(5-1) = 1/4, так как один шар уже вытащен. Исходная вероятность равна произведению этих двух вероятностей = 1/4 2/5 = 2/20 = 0.1
Итак, есть уравнение
Это уравнение всегда является квадратным относительно переменной х, а значит, максимум может быть два корня. Здесь это и требуется.
Ситуация, когда один корень равен другому, даже если этот корень 0, не подходит. На это есть ограничение D>0
По теореме Виета мы должны получить, что сумма корней равна 0, а их произведение всегда меньше 0.
Тогда получается, что
из этой системки (из 1-го уравнения) получаем, что m=0 или m=4, но из второго условия (неравенства) явно получаем, что m<1 и поэтому m=4 не годится. Осталось лишь ограничение D>0. Можно, конечно, было бы сказать, что при одном корне знак произведения всегда неотрицателен, а когда 0 корней, то вообще говорить не о чем. Пути 2: либо проверить само значение m=0, либо проверить D>0, например, если бы таких значений было бесконечно много.
Почему вообще это надо делать: теорема Виета работает прекрасно в любом квадратном уравнении. И вообще у уравнения n-ой степени (ограничимся здесь лишь обычными многочленами) всегда n корней по следствию из основной теоремы алгебры, правда, корни эти комплексные (множество действительных чисел является подмножеством комплексных чисел), так что у квадратного уравнения, на самом деле, всегда 2 корня, но не забивайте себе этим голову, просто примите к сведению, что D>0 здесь тоже надо бы проверить (а проще гораздо проверить само m=0)
Для того чтобы найти, на каких промежутках D>0, надо решить уравнение сначала D=0. Но там 4 страшных корня, 2 из которых действительные и нужны нам. Так что, как показывает практика, в эти дебри лучше не лезть. Но ради интереса я прикреплю картинки с формулами этих чисел. При подстановке m=0 D=12>0, что подходит.
И ещё раз повторю, что некоторые сведения были даны, чтобы понять, что в математике все не просто так и иногда какие-то вещи на самом деле гораздо более глубокие, чем мы думаем.
ответ:
У тебя цифры 3, 5, 7, 9. Т. е. их, получается, 4. В трёхзначных числах цифры могут повторяться (ну оно понятно, система-то позиционная). Юзаем комбинаторный принцип умножения. Цифр четыре, позиций три, значит ответ = 4*4*4 = 64.
Раз номер первый нечетный, то последняя должна быть четной т. е. только 314 т. к. 143 первой быть не может. 86 страниц получается.
Всего шаров = 2 + 3 = 5
Черных шаров = 2
Вероятность вытащить черный шар = 2/5
Вероятность того, что второй шар будет тоже черным = (2-1)/(5-1) = 1/4, так как один шар уже вытащен.
Исходная вероятность равна произведению этих двух вероятностей = 1/4 2/5 = 2/20 = 0.1
x/10 * (x-1)/9 = 2/15
(x^2-x)/90 = 2/15
x^2-x = 12
x^2-x-12 = 0
x = 4