Тк каждый знаком ровно с 10 людьми,то общее число знакомых пар равно: N=125*10/2 ,(делим на 2 Тк если суммировать по группам по 10,то знакомые пары будут встречаться повторно,то есть первый знает второго и второй знает первого) Предположим, что из ушедших людей нет знакомых,тогда очевидно,что число знакомых пар уменьшиться на 10*x,где x-число ушедших людей. (Надеюсь ясно). Пусть m - одинаковое число знакомых ,которое знает каждый из оставшихся людей (по условию). Ясно ,что 0 < m <10. Тк число оставшихся знакомых пар будет равно: m*(125-x)/2 Тогда верно равенство: 125*10/2 - 10*x =m*(125-x)/2 1250-20*x=125*m-m*x 1250=125*m+20*x-mx 1250=(125-x)*(m-20) +20*125 -1250=(125-x)*(m-20) 1250=(125-x)*(20-m) 1250=5^4 *2 Тк 125-x<5^4=625,то 20-m кратно 5. 10 <20-m <20. Тогда 20-m=15,что кратно 3,но 1250 не делиться на 3. То есть мы пришли к противоречию. Значит среди ушедших есть знакомые.
Во слишком много - ответы тоже краткие.
Объяснение:
1,1 f(-6) = 1/3*36 +12 = 24 - ответ.
1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ
2. Не допускается деление на 0.
Дано: y =x²-1*x-6 - квадратное уравнение.
Вычисляем дискриминант - D.
D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень
3 и -2 - корни уравнения - исключить из ООФ.
D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ
3,1
Дано: y = x²-4*x+3 - квадратное уравнение.
D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень
3 и 1 - нули функции.
Минимум посередине между нулями = (1+3)/2 = 2 = x.
Fmin(2) = -1
Вершина параболы в точке А(2;-1), ветви вверх.
1) E(f) = [-1;+∞) - область значений.
2) Убывает: х = (-∞;2)
3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ
4) Графики на рисунке в приложении.
5) Разрывы при делении на 0 в знаменателе.
х² ≠ 16 и х ≠ ± 4.
D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.