Дана функция y=3/8x-7.Задайте формулой какую нибудь линейную функцию график которой а)параллелен графику данной функции б)пересекает график данной функции в оси ординат
58/100 = 29/50; 42/100 = 21/50. Чтобы получились точные значения 58% и 42%, должно быть минимум 50 чел, тогда 29 чел = 58%, 21 чел = 42%. а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел. Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%. Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%. 42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%. ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия: 1) n*0,58 = k,p ~ k (целое) 2) k/n ~ 0,58 (при округлении до сотых) Те же 2 условия должны соблюдаться для 0,42. Опытным путем мне удалось найти минимальное количество - 12. 12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58% 12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%
Чтобы получились точные значения 58% и 42%, должно быть минимум
50 чел, тогда 29 чел = 58%, 21 чел = 42%.
а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел.
Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%.
Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%.
42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%.
ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия:
1) n*0,58 = k,p ~ k (целое)
2) k/n ~ 0,58 (при округлении до сотых)
Те же 2 условия должны соблюдаться для 0,42.
Опытным путем мне удалось найти минимальное количество - 12.
12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58%
12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%
берем производную функции и смотрим ее знак на этих интервалах
1)
f(x) = x² - 2x
f'(x) = 2x - 2
(0,1): f'(x)<0 => f(x) убывает на этом интервале.
(3,4): f'(x)>0 => f(x) возрастает на этом интервале.
2)
f(x) = -x² + x - 1
f'(x) = -2x + 1
(-1,0): f'(x)>0 => f(x) возрастает на этом интервале.
(1,3): f'(x)<0 => f(x) убывает на этом интервале.
можно еще одним . это парабола. ветви у первой вверх (а=1), у второй вниз (a=-1)
Затем найти вершину параболы по формуле x=b/2a - узнали точку перегиба и дальше все легко и никаких производных