Объяснение:
1. Элементы множества могут быть перечислены в любом порядке.
1) {1/5; 2/5; 3/5; 4/5}
2) {ф; и; з; к; а}
3) {1; 2; 3; 0}
2. Пересечение и объединение множеств.
A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 4; 8; 16}
Пересечение: {1; 2; 4}
Объединение: {1; 2; 3; 4; 6; 8; 12; 16}
3. Сравнить числа:
1) 5,(16) и 5,16
5,(16) = 5,1616...
5,16 = 5,1600...
5,(16) > 5,16
2) -2,(35) и -2,5
-2,(35) = -2,3535...
-2,5 = -2,5000...
2,5 > 2,3535..., у отрицательных чисел все наоборот поэтому:
-2,(35) > -2,5
3) 6,(23) и 6,24
6,(23) = 6,2323...
6,24 = 6,2400...
6,(23) < 6,24
4. И 5. Задания повторяют 1. И 2.
175 км
Пусть скорость 1 автомобиля (из А) x км/ч а 2 автомобиля (из В) y км/ч.
Очевидно, x > y, потому что автомобиль из А догнал автомобиль из В.
Расстояние AC = S км, тогда расстояние BC = S-70 км.
Они приехали в С одновременно, значит, время в пути:
t1 = S/x = (S-70)/y
Теперь про увеличенные скорости. Тут два варианта:
1 вариант.
1 автомобиль ехал на 25 км/ч быстрее, а 2 на 15 км/ч быстрее.
И они тоже приехали одновременно:
t2 = S/(x+25) = (S-70)/(y+15)
Решаем систему:
{ S/x = (S-70)/y
{ S/(x+25) = (S-70)/(y+15)
Избавляемся от дробей:
{ Sy = (S-70)x
{ S(y+15) = (S-70)(x+25)
Раскрываем скобки:
{ Sy = Sx - 70x
{ Sy + 15S = Sx + 25S - 70x - 70*25
Выделим Sx - Sy = S(x-y)
{ S(x-y) = 70x
{ S(x-y) = 1750 - 10S + 70x
Подставляем 1 уравнение во 2 уравнение:
70x = 1750 - 10S + 70x
10S = 1750
S = 175 км
2 вариант.
1 автомобиль ехал на 15 км/ч быстрее, а 2 на 25 км/ч быстрее.
Рассматривать смысла нет, там расстояние будет отрицательным.
Объяснение:
1. Элементы множества могут быть перечислены в любом порядке.
1) {1/5; 2/5; 3/5; 4/5}
2) {ф; и; з; к; а}
3) {1; 2; 3; 0}
2. Пересечение и объединение множеств.
A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 4; 8; 16}
Пересечение: {1; 2; 4}
Объединение: {1; 2; 3; 4; 6; 8; 12; 16}
3. Сравнить числа:
1) 5,(16) и 5,16
5,(16) = 5,1616...
5,16 = 5,1600...
5,(16) > 5,16
2) -2,(35) и -2,5
-2,(35) = -2,3535...
-2,5 = -2,5000...
2,5 > 2,3535..., у отрицательных чисел все наоборот поэтому:
-2,(35) > -2,5
3) 6,(23) и 6,24
6,(23) = 6,2323...
6,24 = 6,2400...
6,(23) < 6,24
4. И 5. Задания повторяют 1. И 2.
175 км
Объяснение:
Пусть скорость 1 автомобиля (из А) x км/ч а 2 автомобиля (из В) y км/ч.
Очевидно, x > y, потому что автомобиль из А догнал автомобиль из В.
Расстояние AC = S км, тогда расстояние BC = S-70 км.
Они приехали в С одновременно, значит, время в пути:
t1 = S/x = (S-70)/y
Теперь про увеличенные скорости. Тут два варианта:
1 вариант.
1 автомобиль ехал на 25 км/ч быстрее, а 2 на 15 км/ч быстрее.
И они тоже приехали одновременно:
t2 = S/(x+25) = (S-70)/(y+15)
Решаем систему:
{ S/x = (S-70)/y
{ S/(x+25) = (S-70)/(y+15)
Избавляемся от дробей:
{ Sy = (S-70)x
{ S(y+15) = (S-70)(x+25)
Раскрываем скобки:
{ Sy = Sx - 70x
{ Sy + 15S = Sx + 25S - 70x - 70*25
Выделим Sx - Sy = S(x-y)
{ S(x-y) = 70x
{ S(x-y) = 1750 - 10S + 70x
Подставляем 1 уравнение во 2 уравнение:
70x = 1750 - 10S + 70x
10S = 1750
S = 175 км
2 вариант.
1 автомобиль ехал на 15 км/ч быстрее, а 2 на 25 км/ч быстрее.
Рассматривать смысла нет, там расстояние будет отрицательным.