Обозначим искомые числа через 10a+b. Тогда при возведении в квадрат по требованию задачи должны выполняться условия: b^2 должно быть числом, оканчивающимся на цифру b. Таких цифр четыре: 0, 1, 5 и 6. Пусть наше число оканчивается на 0. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это невозможно, поскольку b=0. Пусть искомое число оканчивается на 1. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это также невозможно, поскольку число 2*a может оканчиваться на цифру a только при a=0, но a - первая цифра в нашем числе и a ≠ 0. Пусть теперь наше число оканчивается на 5. Тогда должно выполняться условие: число 2*a*b+2 должно оканчиваться на a. Этому условию удовлетворяют a=2, b=5. Т. о. 25^2 = 625 оканчивается на 25. Поскольку последние две цифры в числе будут оставаться 2 и 5, то при возведении в любую натуральную степень соответствующие числа будут оканчиваться на 25. Поэтому число 25 нам подходит. Пусть искомое число оканчивается на 6. Тогда должно соблюдаться 2*a*b+3 должно оканчиваться на a. Т. к. b=6, то a*12+3 оканчивается на a. Отсюда находим, что a=7. Т. о. получаем второе число, которое также при возведении в любую натуральную степень будет оканчиваться на 76. Это единственные два двузначных числа, удовлетворяющие требованиям.
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение:
Обозначим искомые числа через 10a+b. Тогда при возведении в квадрат по требованию задачи должны выполняться условия: b^2 должно быть числом, оканчивающимся на цифру b. Таких цифр четыре: 0, 1, 5 и 6. Пусть наше число оканчивается на 0. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это невозможно, поскольку b=0. Пусть искомое число оканчивается на 1. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это также невозможно, поскольку число 2*a может оканчиваться на цифру a только при a=0, но a - первая цифра в нашем числе и a ≠ 0. Пусть теперь наше число оканчивается на 5. Тогда должно выполняться условие: число 2*a*b+2 должно оканчиваться на a. Этому условию удовлетворяют a=2, b=5. Т. о. 25^2 = 625 оканчивается на 25. Поскольку последние две цифры в числе будут оставаться 2 и 5, то при возведении в любую натуральную степень соответствующие числа будут оканчиваться на 25. Поэтому число 25 нам подходит. Пусть искомое число оканчивается на 6. Тогда должно соблюдаться 2*a*b+3 должно оканчиваться на a. Т. к. b=6, то a*12+3 оканчивается на a. Отсюда находим, что a=7. Т. о. получаем второе число, которое также при возведении в любую натуральную степень будет оканчиваться на 76. Это единственные два двузначных числа, удовлетворяющие требованиям.
ответ: 25 и 76.