Площадь фигуры ограниченной линиями f(x)=x+5, g(x)=6/x, x=-2, x=6 и осью 0x равна (16,5 +6 ln6) ед.²
Объяснение:
Требуется найти площадь фигуры ограниченной линиями f(x)=x+5, g(x)=6/x, x=-2, x=6 и осью 0x.
Площадь фигуры найдем по формуле:
Дано:
Построим графики и определим область, которая ограничена данными линиями.
1.
-линейная функция, график прямая.
Для построения достаточно две точки:
х = -5, у=0;
х = 1, у=6.
Строим график.
2.
-функция обратной пропорциональности, график гипербола, расположенная в первой и третьей четвертях.
Возьмем четыре точки:
х = 1, у = 6;
х = 2, у = 3;
х = 3, у = 2;
х = 6, у = 3.
Строим одну ветвь гиперболы. Вторую строим симметрично начала координат.
3. Точки пересечения данных графиков:
(1; 6) и (-6; -1).
4. Видим, что искомая площадь состоит из двух площадей:
5. Найдем S₁.
Линия сверху f₂(x) = x+5, снизу f₁(x) = 0, слева b = -2, справа a = 1.
6. Найдем S₂.
f₂(x) = 6/x, f₁(x) = 0, b = 1, a = 6.
7. S = S₁ +S₂ = 13,5 + 6 ln6 (ед²)
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
Площадь фигуры ограниченной линиями f(x)=x+5, g(x)=6/x, x=-2, x=6 и осью 0x равна (16,5 +6 ln6) ед.²
Объяснение:
Требуется найти площадь фигуры ограниченной линиями f(x)=x+5, g(x)=6/x, x=-2, x=6 и осью 0x.
Площадь фигуры найдем по формуле:
Дано:
Построим графики и определим область, которая ограничена данными линиями.
1.
-линейная функция, график прямая.
Для построения достаточно две точки:
х = -5, у=0;
х = 1, у=6.
Строим график.
2.
-функция обратной пропорциональности, график гипербола, расположенная в первой и третьей четвертях.
Возьмем четыре точки:
х = 1, у = 6;
х = 2, у = 3;
х = 3, у = 2;
х = 6, у = 3.
Строим одну ветвь гиперболы. Вторую строим симметрично начала координат.
3. Точки пересечения данных графиков:
(1; 6) и (-6; -1).
4. Видим, что искомая площадь состоит из двух площадей:
5. Найдем S₁.
Линия сверху f₂(x) = x+5, снизу f₁(x) = 0, слева b = -2, справа a = 1.
6. Найдем S₂.
f₂(x) = 6/x, f₁(x) = 0, b = 1, a = 6.
7. S = S₁ +S₂ = 13,5 + 6 ln6 (ед²)