В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Остап1843
Остап1843
11.04.2022 20:49 •  Алгебра

Через точку (1; 4) провести прямую так, чтобы сумма длин положительных отрезков, отсекаемых ею на координатных осях, была наименьшей.

Показать ответ
Ответ:
Head5
Head5
09.10.2020 20:18

Проведём через точку (1; 4) прямую, пересекающую оси Ох и Оу в положительных значениях. Координата точки пересечения с осью Ох равна х, а с осью Оу равна у.

Длину по у можно выразить через х по пропорции:

4/(х - 1) = у/х, отсюда у = 4х/(х - 1).

Сумма длин х + у = х + (4х/(х - 1)) = (х² - х + 4х)/(х - 1) = (х² + 3х)/(х - 1).

Производная этой функции равна y' = (x² - 2x - 3)/(x - 1)².

Для нахождения минимума приравняем её нулю (достаточно числитель): x² - 2x - 3 = 0. Д = 4 + 4*3 = 16. х = (2+-4)/2 = 3 и -1 (отрицательное значение не принимаем).

Определим знаки производной (по числителю - знаменатель положителен) левее и правее найденной критической точки.

х =     2      3      4

y' =   -3      0      5    Переход от + к -  это минимум.

Находим уравнение прямой через 2 точки: (1; 4) и (3; 0)

(х - 1)/2 = (у - 4)/-4.  Сократим знаменатели на 2.

(х - 1)/1 = (у - 4)/-2. это каноническое уравнение прямой.

-2х + 2 = у - 4.

у + 2х - 6 = 0  это общее уравнение прямой,

у = -2х + 6   оно же с угловым коэффициентом.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота