Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Для суммы бесконечно убывающей геометрической прогрессии справедлива формула:
Значит для второй и третьей последовательности (квадратов и кубов) справедливо:
Нам известно, что:
И известно:
Получаем:
Получаем уравнение
Перебором делителей свободного члена находим, что корнем является q = 1 (который, нам, однако, не подходит, поскольку |q| должен быть меньше 1 т.к. прогрессия бесконечно убывает) и поделив на q - 1 получаем:
Находя корни квадратного уравнения, получаем:
Из которых (по причине, описанной ранее) подходит только 1/4.
Дальше из условия находим, что , а третий член равен
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Для суммы бесконечно убывающей геометрической прогрессии справедлива формула:
Значит для второй и третьей последовательности (квадратов и кубов) справедливо:
Нам известно, что:
И известно:
Получаем:
Получаем уравнение
Перебором делителей свободного члена находим, что корнем является q = 1 (который, нам, однако, не подходит, поскольку |q| должен быть меньше 1 т.к. прогрессия бесконечно убывает) и поделив на q - 1 получаем:
Находя корни квадратного уравнения, получаем:
Из которых (по причине, описанной ранее) подходит только 1/4.
Дальше из условия находим, что , а третий член равен