Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Если дискриминант отрицательный ---> корней НЕТ))) а корни --- это точки, лежащие на оси ОХ --- точки пересечения графика этой функции с осью ОХ (а график здесь --- парабола))) и что значит, что корней НЕТ?? --- значит, график эту ось НЕ пересекает... т.е. парабола либо ВСЯ выше оси ОХ, либо вся ниже оси ОХ... осталось рассмотреть направление ветвей параболы... старший коэффициент > 0 (3 > 0) ---> ветви ВВЕРХ, т.е. ВСЯ парабола выше оси ОХ (иначе парабола пересечет ось ОХ))) а вопрос (знак неравенства): когда парабола НИЖЕ оси ОХ ответ: никогда (пустое множество решений)
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
а корни --- это точки, лежащие на оси ОХ --- точки пересечения графика этой функции с осью ОХ (а график здесь --- парабола)))
и что значит, что корней НЕТ?? --- значит, график эту ось НЕ пересекает...
т.е. парабола либо ВСЯ выше оси ОХ, либо вся ниже оси ОХ...
осталось рассмотреть направление ветвей параболы...
старший коэффициент > 0 (3 > 0) ---> ветви ВВЕРХ, т.е. ВСЯ парабола выше оси ОХ (иначе парабола пересечет ось ОХ)))
а вопрос (знак неравенства): когда парабола НИЖЕ оси ОХ
ответ: никогда (пустое множество решений)