Можно, например, использовать непрерывность функции f(x) = (x−a)(x−b)+(x−a)(x−c)+(x−b)(x−c) и исследовать её поведение.
а) при x→±∞: y→±∞ б) в силу симметрии функции относительно параметров a, b, c без ограничения общности можно считать, что a≤b≤c f(x=a) = (a−b)(a−c) f(x=b) = (b−a)(b−c) f(x=c) = (c−a)(c−b) б1) пусть сначала все числа a, b, c различны: a<b<c f(x=a) > 0 f(x=b) < 0 f(x=c) > 0
Значит, f(x) меняет знак трижды и, следовательно, имеет как минимум три корня: на интервалах (−∞,a), (a,b), (b,c).
б2) если хотя бы два числа из тройки (a,b,c) совпадают, то хотя бы одно из чисел a, b, c будет корнем уравнения f(x)=0.
f(x) = (x−a)(x−b)+(x−a)(x−c)+(x−b)(x−c)
и исследовать её поведение.
а) при x→±∞: y→±∞
б) в силу симметрии функции относительно параметров a, b, c без ограничения общности можно считать, что a≤b≤c
f(x=a) = (a−b)(a−c)
f(x=b) = (b−a)(b−c)
f(x=c) = (c−a)(c−b)
б1) пусть сначала все числа a, b, c различны: a<b<c
f(x=a) > 0
f(x=b) < 0
f(x=c) > 0
Значит, f(x) меняет знак трижды и, следовательно, имеет как минимум три корня: на интервалах (−∞,a), (a,b), (b,c).
б2) если хотя бы два числа из тройки (a,b,c) совпадают, то хотя бы одно из чисел a, b, c будет корнем уравнения f(x)=0.
ответ:
раскроем выражение в уравнении
((xy+x)−3)2+((xy+y)−4)2=0
получаем квадратное уравнение
2x2y2+2x2y+x2+2xy2−14xy−6x+y2−8y+25=0
это уравнение вида
a*x^2 + b*x + c = 0
квадратное уравнение можно решить
с дискриминанта.
корни квадратного уравнения:
x1=d−−√−b2a
x2=−d−−√−b2a
где d = b^2 - 4*a*c - это дискриминант.
т.к.
a=2y2+2y+1
b=2y2−14y−6
c=y2−8y+25
, то
d = b^2 - 4 * a * c =
(-6 - 14*y + 2*y^2)^2 - 4 * (1 + 2*y + 2*y^2) * (25 + y^2 - 8*y) = (-6 - 14*y + 2*y^2)^2 - (4 + 8*y + 8*y^2)*(25 + y^2 - 8*y)
уравнение имеет два корня.
x1 = (-b + sqrt(d)) / (2*a)
x2 = (-b - sqrt(d)) / (2*a)