Объяснение:
1)Пусть боковая сторона равна x см, тогда основание равно y см. Зная, что основание на 7 больше, составлю первое уравнение системы:
y-x = 7
Зная, что периметр равнобедренного треугольника равен 43 см(для равнобедренного треугольника получаем выражение 2x + y), составлю второе уравнение системы:
2x + y = 43
Таким образом, получаем следующую систему уравнений:
2x+y = 43
решу систему методом подстановки:
y = x+7
2x + x+7 = 43 (1)
(1)2x+x+7 = 43
3x+7 = 43
3x = 36
x = 12
12 см - боковая сторона треугольника, но надо всё равно дорешать систему.
y = 12+7 = 19
ответ, 12 см равна боковая сторона. ответ на вопрос задачи мы получили.
Объяснение:
1)Пусть боковая сторона равна x см, тогда основание равно y см. Зная, что основание на 7 больше, составлю первое уравнение системы:
y-x = 7
Зная, что периметр равнобедренного треугольника равен 43 см(для равнобедренного треугольника получаем выражение 2x + y), составлю второе уравнение системы:
2x + y = 43
Таким образом, получаем следующую систему уравнений:
y-x = 7
2x+y = 43
решу систему методом подстановки:
y = x+7
2x + x+7 = 43 (1)
(1)2x+x+7 = 43
3x+7 = 43
3x = 36
x = 12
12 см - боковая сторона треугольника, но надо всё равно дорешать систему.
x = 12
y = 12+7 = 19
ответ, 12 см равна боковая сторона. ответ на вопрос задачи мы получили.
1) 2sin x-1=0
sinx = 1/2
x = (-1)^n arcsin(1/2) + πk, k∈Z
x = (-1)^n (π/6) + πk, k∈Z
2) cos(2x+П/6)+1=0
cos(2x+П/6) = - 1
2x+П/6 = π + 2πn, n∈Z
2x = π - π/6 + 2πn, n∈Z
2x = 5π/6 + 2πn, n∈Z
x = 5π/12 + πn, n∈Z
3) 6sin²x - 5cosx + 5 = 0
6(1 - cos²x) - 5cosx + 5 = 0
6 - 6cos²x - 5cosx + 5 = 0
6cos²x + 5cosx - 11 = 0
cosx = t, ItI ≤ 1
6t² + 5t - 11 = 0
D = 25 + 4*6*11 = 289
t₁ = (- 5 - 17)/12
t₁ = - 22/12
t₁ = -11/6
t₁ = - 1 (5/6) не удовлетворяет условию ItI ≤ 1
t₂ = (- 5 + 11)/12
t₂ = 1/2
cosx = 1/2
x = (+ -)arccos(1/2) + 2πm, m∈Z
x = (+ -) *(π/3) + 2πm, m∈Z