1. чтобы корень существовал, выражение под корнем не должно принимать отрицательных значений... 2. произведение (скобки на корень) должно получиться отрицательным (по условию), а корень четной степени не может быть отрицательным числом, потому выражение в скобке должно быть отрицательным: (-)*(+) < 0 получим систему неравенств: {x² - 1 ≤ 0 {x² - 4 ≥ 0 оба неравенства решаются методом интервалов... {(x - 1)(х + 1) ≤ 0 ---> x ∈ [-1; 1] {(x - 2)(х + 2) ≥ 0 ---> x ∈ (-∞; -2] U [2; +∞) решение системы --пересечение промежутков... ответ: {-2; 2}
1) 10 возводится в сотую степень, в результате получится огромное число, у которого после единицы сто нулей. Когда прибавим восьмёрку, то получим число, состоящее из 99 нулей, одной единицы и одной восьмёрки. Примерно так: 100000000008. Сумма цифр равна 9. А признак делимости говорит, что число делится на 9, если сумма цифр числа делится на 9. Что и требовалось доказать.
2) При возведении числа 111 в любую натуральную степень последняя цифра будет всегда 1. Если из такого числа вычесть 6, то на конце будет цифра 5. А число, которое заканчивается нулём или пятёркой, делится на 5. Что у нас и наблюдается.
выражение под корнем не должно принимать отрицательных значений...
2. произведение (скобки на корень) должно получиться отрицательным (по условию), а корень четной степени не может быть отрицательным числом, потому выражение в скобке должно быть отрицательным: (-)*(+) < 0
получим систему неравенств:
{x² - 1 ≤ 0
{x² - 4 ≥ 0
оба неравенства решаются методом интервалов...
{(x - 1)(х + 1) ≤ 0 ---> x ∈ [-1; 1]
{(x - 2)(х + 2) ≥ 0 ---> x ∈ (-∞; -2] U [2; +∞)
решение системы --пересечение промежутков...
ответ: {-2; 2}
2) При возведении числа 111 в любую натуральную степень последняя цифра будет всегда 1. Если из такого числа вычесть 6, то на конце будет цифра 5. А число, которое заканчивается нулём или пятёркой, делится на 5. Что у нас и наблюдается.