В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Luiza211
Luiza211
30.11.2021 01:36 •  Алгебра

Алгебра 8 класс

КР Основное свойство рациональной дроби.


Алгебра 8 класс КР Основное свойство рациональной дроби.

Показать ответ
Ответ:
dariamisskapri
dariamisskapri
27.01.2021 18:28
||2^x+x-2|-1| > 2^x-x-1
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0

Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2

2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x                        {2x-2>0
{2^x+x-2>x-2^x                        {2*2^x-2>0
{2^x+x-2>-2^x+x+2                  {2*2^x-4>0
{2^x+x-2>2^x-x-2                      {2x>0

{x>1                   {x>1                         
{2^x>1                {x>0
{2^x>2                {x>1
{x>0                    {x>0

Решением неравенства является промежуток (1; + беск.)                   

 
0,0(0 оценок)
Ответ:
hamster321123
hamster321123
31.05.2020 15:47
3^1 = 3, \ 3^2 = 9, \ 3^3 = 27, \ 3^4 = 81

Чередуются цифры: 3, 9, 7, 1.
Если показатель степени с основанием 3 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 3, 9 или 7).

7^1 = 7, \ 7^2 = 49, \ 7^3 = 343, \ 7^4 = 2401

Чередуются цифры: 7, 9, 3, 1.
Если показатель степени с основанием 7 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 7, 9 или 3).

16 = 4*4 + 0, следовательно, числа 3^{16} и 7^{16} оканчиваются на 1, а их сумма (...1 + ...1) на 2.

Для таких рассуждений есть строгие формальные обозначения, но их далеко не всегда проходят в школе. Вот так выглядит более строгое решение:

3 \equiv 3 \ (\mod 10 \ ), \ 3^2 \equiv 9 \ (\mod 10 \ )\\\\&#10;3^4 \equiv 81 \ (\mod 10 \ ), \ 81 \equiv 1 \ ( \mod 10 \ ) \Rightarrow 3^4 \equiv 1 \ (\mod 10 \ )\\\\&#10;3^{16} \equiv 1 \ (\mod 10 \ )

7 \equiv 7 \ (\mod 10 \ ), \ 7^2 \equiv 49 \ (\mod 10 \ )\\\\&#10;7^4 \equiv 2401 \ (\mod 10 \ ), \ 2401 \equiv 1 \ ( \mod 10 \ ) \Rightarrow 7^4 \equiv 1 \ (\mod 10 \ )\\\\&#10;7^{16} \equiv 1 \ (\mod 10 \ )\\\\&#10;3^{16} + 7^{16} \equiv 1 + 1 \ (\mod 10 \ )\\\\&#10;3^{16} + 7^{16} \equiv 2 \ (\mod 10 \ )
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота