Функция возрастает если ее производная больше нуля. а если производная меньше нуля, то функция убывает у'=3x²-2x-1 3x²-2x-1=0 D=4+12=16 x1,2=(2+-4)/6 x1=1 x2=-(1/3) (рисуем параболу на оси X) y'>0 при x∈(-∞;-(1/3)|∪|1;+∞) y'<0 при x∈|-1/3;1| точки экстремума это минимальные и максимальные значения точки в некоторой окрестности. необходимое условие y'=0 при x=-(1/3); x=1 достаточное условие это то, что при переходе через эту точку функция меняет знак. Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум. Будут вопросы спрашивай)
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
у'=3x²-2x-1
3x²-2x-1=0
D=4+12=16
x1,2=(2+-4)/6
x1=1
x2=-(1/3)
(рисуем параболу на оси X)
y'>0 при x∈(-∞;-(1/3)|∪|1;+∞)
y'<0 при x∈|-1/3;1|
точки экстремума это минимальные и максимальные значения точки в некоторой окрестности.
необходимое условие y'=0
при x=-(1/3); x=1
достаточное условие это то, что при переходе через эту точку функция меняет знак.
Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум.
Будут вопросы спрашивай)
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.