Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
Самое главное ты уже сделала - это выучила формулы Давай разберем куб суммы (a+b)³=a³+3a²b+3ab²+b³ Здесь везде плюсы, и запоминать знаки не надо (3+2)³=3³+3×3²×2+3×3×2²+2³ при вычеслении будем изначально возводить в квадрат, а затем уже умножать и складывать итак мы получаем 27+3×(9×2)+3×(3×4)+8 27+54+46+8 135 самое главное запомнить 1. Сначала возводишь числа в степень 2. Потом производишь умножение 3. В конце складываешь или вычитаешь В разности кубов будет тоже самое только знаки другие (ну это ты сама знаешь) главное степени знать какие
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
Давай разберем куб суммы
(a+b)³=a³+3a²b+3ab²+b³
Здесь везде плюсы, и запоминать знаки не надо
(3+2)³=3³+3×3²×2+3×3×2²+2³
при вычеслении будем изначально возводить в квадрат, а затем уже умножать и складывать
итак мы получаем
27+3×(9×2)+3×(3×4)+8
27+54+46+8
135
самое главное запомнить
1. Сначала возводишь числа в степень
2. Потом производишь умножение
3. В конце складываешь или вычитаешь
В разности кубов будет тоже самое только знаки другие (ну это ты сама знаешь)
главное степени знать какие