5. Выпишите пять первых членов последовательности, заданной формулой cn=10n-1/9 и найдите их сумму. Является ли эта поледовательность геометрической прогрессией?
Пусть во второй емкости "х" л воды. В первой емкости на 3 л воды больше, значит в первой емкости "х+3" л воды. Если из первой емкости перелить во вторую 15 л воды, то в первой емкости станет "х+3-15" л воды, а во второй станет "х+15" л воды. Зная, что после этого, во второй емкости будет воды в 2 раза больше, составляем уравнение. 2 * (х + 3 - 15) = х + 15 ; 2 * (х - 6 ) = х + 15 ; 2х - 12 = х + 15 ; 2х - х = 15 + 12 ; х = 27 (л) во второй емкости. 1) х + 3 = 27 + 3 = 30 (л) в первой емкости.
Объяснение:
Пусть во второй емкости "х" л воды. В первой емкости на 3 л воды больше, значит в первой емкости "х+3" л воды. Если из первой емкости перелить во вторую 15 л воды, то в первой емкости станет "х+3-15" л воды, а во второй станет "х+15" л воды. Зная, что после этого, во второй емкости будет воды в 2 раза больше, составляем уравнение. 2 * (х + 3 - 15) = х + 15 ; 2 * (х - 6 ) = х + 15 ; 2х - 12 = х + 15 ; 2х - х = 15 + 12 ; х = 27 (л) во второй емкости. 1) х + 3 = 27 + 3 = 30 (л) в первой емкости.
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение: