5. а) рассчитайте значение х, с которой числовая последовательность : x+1; 4x-1; x^2+3 является арифметической прогрессией
b) решите уравнение 5+8+11+...(3x+2)=670
с) рассчитайте х значение, с которой 3 числовых последавателньостей 36; 7*3^x; 2*3^x являются арифметической прогрессией
1) х - одна сторона прямоугольника
х - 3 - другая сторона прямоугольника
х · (х - 3) = 54 - площадь прямоугольника
х² - 3х - 54 = 0
D = 9 + 216 = 225
√D = 15
x₁ = 0.5 (3 - 15) = -6 (не подходит по физическому смыслу: длина не может быть отрицательной)
х₂ = 0,5(3 + 15) = 9 (см) - одна сторона
9 - 3 = 6 (см) - вторая сторона
Р = 2(9 + 6) = 30(см) - периметр прямоугольника
2)Введем переменную, пусть собственная скорость катера равна х, значит, по озеру катер шел со скоростью х км/ч. А по течению реки катер шел со скоростью (х + 3) км/ч.
Выразим время движения катера по течению реки: t = S/v; 5/(х + 3).
Выразим время движения катера по озеру: 8/х.
Так на все он потратил 1 час, составляем уравнение:
5/(х + 3) + 8/х = 1;
(5х + 8х + 24)/х(х + 3) = 1;
(13х + 24)/(х² + 3х) = 1.
По правилу пропорции: х² + 3х = 13х + 24;
х² + 3х - 13х - 24 = 0;
х² - 10х - 24 = 0.
D = 100 + 96 = 196 (√D = 14);
х1 = (10 - 14)/2 = -2 (не подходит).
х2 = (10 + 14)/2 = 12 (км/ч) - собственная скорость катера.
Тогда скорость по течению будет равна х + 3 = 12 + 3 = 15 (км/ч).
ответ: скорость катера по течению равна 15 км/ч.
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.