В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
aisultankubashev
aisultankubashev
26.04.2020 01:56 •  Алгебра

5.14. Упростите выражение: 1) (4*3")? : (4* - 13n-1)2;
3) (11*5*) : (115-1);
2) (7m9") 3 : (7m - 29n) 3;
4) (136) 3 : (13т 6h - 1).​

Показать ответ
Ответ:
mynee
mynee
02.08.2021 01:18

Пусть одно из слагаемых равно x. Тогда второе равно 5-x. Произведение, о котором говорится в условии задается формулой x(5-x)^4. Нам нужно найти x, для которого это выражение оказывается наибольшим. То есть фактически нужно найти точку максимума функции f(x)=x(5-x)^4 на интервале (0; 5).

Возьмём производную:

f'(x)=(5-x)^4-4(5-x)^3=(5-x)^3(5-x-4x)=5(5-x)^3(1-x)

На заданном интервале производная имеет единственный ноль: точку x=1. При этом: f(0)=f(5)=0, f(1)=256. Значит x=1 - точка максимума на интервале (0; 5).

1 это первое слагаемое. Тогда второе, очевидно, равно 4.

ответ: 1 и 4

0,0(0 оценок)
Ответ:
ixnivoodoo
ixnivoodoo
12.04.2021 23:28

Запишем эту сумму для произвольного числа слагаемых:

S(k)=\frac{1}{2!} +\frac{2}{3!} +\frac{3}{4!} +...+\frac{k}{(k+1)!}

Вычислим значения S(k) для нескольких значений k:

S(1)=\frac{1}{2!} =\frac{1}{2}= \frac{2!-1}{2!} \\S(2)=\frac{1}{2} +\frac{2}{3!} =\frac{5}{6}=\frac{3!-1}{3!} \\S(3)=\frac{5}{6}+\frac{3}{4!}=\frac{23}{24} =\frac{4!-1}{4!}

Тогда можно предположить, что

S(k)=\frac{(k+1)!-1}{(k+1)!}=1-\frac{1}{(k+1)!}

Но это ещё надо доказать. Используем индукцию. Выше было показано, что равенство верно для первых 3 натуральных k. Докажем, что из справедливости равенства для k=n следует справедливость равенства для k=n+1, тогда равенство можно будет считать справедливым для всех натуральных k.

Итак, предположим, что справедливо равенство

\frac{1}{2!} +\frac{2}{3!} +\frac{3}{4!} +...+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}

Проверим, верно ли, что

\frac{1}{2!} +\frac{2}{3!} +\frac{3}{4!} +...+\frac{n}{(n+1)!}+\frac{n+1}{(n+2)!}=1-\frac{1}{(n+2)!}

Подставляем сюда предыдущее выражение:

1-\frac{1}{(n+1)!}+\frac{n+1}{(n+2)!}=1-\frac{1}{(n+2)!}\\\frac{n+2}{(n+2)!}=\frac{1}{(n+1)!}\\\frac{1}{(n+1)!}=\frac{1}{(n+1)!}

Получили верное равенство. Теперь можно вычислить значение нашей суммы:

S(2006)=1-\frac{1}{2007!}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота