В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ggvpizi09
ggvpizi09
27.01.2023 03:24 •  Алгебра

453. Найдите наибольшее и наименьшее значения кубической функции y=f(x)=ax^{3}+bx^{2}+cx+d в интервале. a)y=f(x)=x^{3}-3x,x∈[0;2]
b)y=f(x)=x^{3}+3x+1,x∈[-3;3]

Показать ответ
Ответ:
irinkacs
irinkacs
11.01.2021 23:10

a)y(наиб)=2

  y(наим)=-2

b)y(наим)=-29

   y(наиб)=31

Объяснение:

a)

1)Находим производную функции :

f'(x)=3x^2-3

2) Приравниваем производную к 0 ( находим нули производной):

3x^2-3=0 --> x=1

                     x=-1

3) Промежутку принадлежит только точка x=1 , поэтому значения функции на концах и в точке 1:

f(0)=0

f(1)=-2-наим

f(2)=8-6=2-наиб

б)

1)Находим производную функции :

f'(x)=3x^2+3

2) Приравниваем производную к 0 ( находим нули производной):

3x^2+3=0 --> решений нет , значит наибольшее значение достигает правом конце отрезка [-3;3] , а наименьшее - в левом:

3) f(-3)=-27-3+1=-29

   f(3)=27+3+1=31

     

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота