В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
мэри114
мэри114
29.07.2022 16:06 •  Алгебра

4. доказать, что при каждом n принадлежащем n число 7^2n-1 делится на 48 5. доказать, что для любого n принадлежащего n справедливо равенство 1+2+3+⋯+n=1/2 n(n+1) 6. доказать, что для любого n принадлежащего n справедливо равенство 1∙4+2∙7+3∙10+n(3n+1)=n〖(n+1)〗^2

Показать ответ
Ответ:
neondragooffi
neondragooffi
02.10.2020 17:33
 7^{2n}-1 \\
 положим что оно делиться на 48 ,тогда методом математической индукций , оно должно делится и на         n+1 
   7^{2(n+1)}-1 = 7^{2n}*49-49+48 = (7^{2n}-1)*49+48 откуда и следует утверждение , так как 7^{2n}-1 делится на 48 , а   48 делится на само себя , то и все выражение делится      на 48 
  
             
  Можно представить как арифметическую прогрессию и по формуле  
  1+2+3+...+n\\
 S_{ariph} = \frac{2*1+1*(n-1)}{2}*n = \frac{n+1}{2}*n 

    1*4+2*7+3*10 + n(3n+1) = n*(n+1)^2 \\
 
 пусть оно верно для первого члена , тогда для последующего , получим    при   n+1    
    1*4+....+n(3n+1)+(n+1)(3n+4 ) = (n+1)(n+2)^2 \\
 n(n+1)^2+(n+1)(3n+4) = (n+1)((n+1) n + 3n+4) \\
 (n+1)( n^2+4n+4) = (n+1)(n+2)^2
 
  
   
 Верно
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота