Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
1) любые 2) любые 5) x ∈ (-∞;-6) ∪ (-6;6) ∪ (6;+∞) 6) любые 9) x ∈ (-∞;-5) ∪ (-5;+∞) 10) с ∈ (-∞;-4) ∪ (-4;3) ∪ (3;+∞)
Дробь имеет смысл, если знаменатель не равен нулю.
Значит задача состоит в том, что мы должны найти значения икса, при которых знаменатель обращается в нуль.
1) знаменатель = 1 -> имеет смысл всегда
2) знаменатель = 7 -> имеет смысл всегда
5) x^2 - 36 = 0
x^2 = 36
x = +6 ; -6;
при x = +6 и x = -6 выражение не имеет смысл.
6) x^6 + 1 = 0
x^6 = -1
степень 6 кратна двум, это значит, что любое число (даже отрицательное) в итоге будет ≥ 0.
Например (-1)^2 = 1.
9) x^2 + 10x + 25 = 0
формула дискриминанта: D = b^2 - 4ac.
D = 10^2 - 4*1*25 = 100 - 100 = 0
D = 0 => x = (-b)/2 = -10/2 = -5
При x = -5 выражение не имеет смысла.
10) выражение, очевидно, не имеет смысла при c - 3 =0 и с + 4 = 0
с = 3 и с = -4.
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
1) любые 2) любые 5) x ∈ (-∞;-6) ∪ (-6;6) ∪ (6;+∞) 6) любые 9) x ∈ (-∞;-5) ∪ (-5;+∞) 10) с ∈ (-∞;-4) ∪ (-4;3) ∪ (3;+∞)
Объяснение:
Дробь имеет смысл, если знаменатель не равен нулю.
Значит задача состоит в том, что мы должны найти значения икса, при которых знаменатель обращается в нуль.
1) знаменатель = 1 -> имеет смысл всегда
2) знаменатель = 7 -> имеет смысл всегда
5) x^2 - 36 = 0
x^2 = 36
x = +6 ; -6;
при x = +6 и x = -6 выражение не имеет смысл.
6) x^6 + 1 = 0
x^6 = -1
степень 6 кратна двум, это значит, что любое число (даже отрицательное) в итоге будет ≥ 0.
Например (-1)^2 = 1.
9) x^2 + 10x + 25 = 0
формула дискриминанта: D = b^2 - 4ac.
D = 10^2 - 4*1*25 = 100 - 100 = 0
D = 0 => x = (-b)/2 = -10/2 = -5
При x = -5 выражение не имеет смысла.
10) выражение, очевидно, не имеет смысла при c - 3 =0 и с + 4 = 0
с = 3 и с = -4.