a) 50
b) [0; 5]
c) [144; 400]
Объяснение:
Для решения этих примеров нужно указать, что функция y=√x является неотрицательной и возрастающей.
a) График функции проходит через точку (a; 5√2). Найдите значение a.
5√2=√a
a=50
b) Если x ∈ [0; 25], то какие значение будет принимать данная функция?
На левой границе: x=0 ⇒ y=√0=0
На правой границе: x=25 ⇒ y=√25=5
Т .е. функция будет принимать значения [0; 5]
c) Найдите значения аргумента, если y ∈ [12; 20]
На левой границе: y=12 ⇒ x=12²=144
На правой границе: y=20 ⇒ x=20²=400
Т.е. аргумент будет принимать значения [144; 400]
Задание 1.
1. 5x⁴x²x=5x⁷, коэффициент 5, степень одночлена 7
2. 4b*0,25a*3m=3abm, коэффициент 3, степень одночлена 3
3. 6x*(-4yz)=-24xyz, коэффициент -24, степень одночлена 3
4. -2,4n²*5n³*x= -12n⁵x, коэффициент -12, степень одночлена 6
5. -15a²*0,2a⁵b³*(-3c)=9a⁷b³c, коэффициент 9, степень одночлена 11
6. y²*(-x³)*y¹¹=-x³y¹³, коэффициент -1, степень одночлена 16
Задание 2.
1. 3n³, если = -2
3*-2³= 3*-8= -24.
2. -4,5xy², если x=1/9, y= -4
-4,5*1/9*-4²= -4,5*1/9*16= -8
3. 7/12ab³, если a= -1/7, b= -2
7/12*-1/7*-2³= 7/12*-1/7*-8= 2/3
4. 0,4m²nk, если m=0,5, n=6, k= -10
0,4*0,5²*6*-10= 0,4*0,25*6*-10= -6
a) 50
b) [0; 5]
c) [144; 400]
Объяснение:
Для решения этих примеров нужно указать, что функция y=√x является неотрицательной и возрастающей.
a) График функции проходит через точку (a; 5√2). Найдите значение a.
5√2=√a
a=50
b) Если x ∈ [0; 25], то какие значение будет принимать данная функция?
На левой границе: x=0 ⇒ y=√0=0
На правой границе: x=25 ⇒ y=√25=5
Т .е. функция будет принимать значения [0; 5]
c) Найдите значения аргумента, если y ∈ [12; 20]
На левой границе: y=12 ⇒ x=12²=144
На правой границе: y=20 ⇒ x=20²=400
Т.е. аргумент будет принимать значения [144; 400]
Задание 1.
1. 5x⁴x²x=5x⁷, коэффициент 5, степень одночлена 7
2. 4b*0,25a*3m=3abm, коэффициент 3, степень одночлена 3
3. 6x*(-4yz)=-24xyz, коэффициент -24, степень одночлена 3
4. -2,4n²*5n³*x= -12n⁵x, коэффициент -12, степень одночлена 6
5. -15a²*0,2a⁵b³*(-3c)=9a⁷b³c, коэффициент 9, степень одночлена 11
6. y²*(-x³)*y¹¹=-x³y¹³, коэффициент -1, степень одночлена 16
Задание 2.
1. 3n³, если = -2
3*-2³= 3*-8= -24.
2. -4,5xy², если x=1/9, y= -4
-4,5*1/9*-4²= -4,5*1/9*16= -8
3. 7/12ab³, если a= -1/7, b= -2
7/12*-1/7*-2³= 7/12*-1/7*-8= 2/3
4. 0,4m²nk, если m=0,5, n=6, k= -10
0,4*0,5²*6*-10= 0,4*0,25*6*-10= -6
Объяснение: