3. Сопоставьте литературное понятие с определением, запишите - буква
1. Антитеза
2. Гипербола
3. Метафора
А. Художественное (образное) определение, выраженное, как
правило, прилагательным
Б. Скрытое сравнение, слово или словосочетание, употреблённое в
переносном значении
В. Изображение одного явления с сопоставления его с
другим
| г. Образное преувеличение
д. Противопоставление предмета, явления, образа
4. Эпитет
15. Сравнение
Пусть раствор в первом сосуде имеет x% концентрацию кислоты, а во втором y%. Найдём массу кислоты в обоих сосудах, составив пропорции. 10 кг - 100% z кг - x% z = 10 * x/100 = 0,1x кг в первом сосуде 16 * y/100 = 0,16y кг кислоты во втором сосуде Если слить их вместе, то получится 26 кг раствора с содержанием кислоты 55%. Составим пропорцию и найдём количество кислоты в 10 + 16 кг раствора. 26 кг - 100% z кг - 55% z = 26 * 55/100 = 14,3 кг 0,1x + 0,16y = 14,3 Найдём массу кислоты в 10 литрах раствора, содержащегося во втором сосуде. 0,16y - в 16 кг z кг - в 10 кг z = 0,16y * 10/16 = 0,1y кг Таким образом, если слить равные массы этих растворов (каждого по 10 литров), то полученная масса раствора составит 20 кг, а кислоты в нём будет 0,1x + 0,1y килограммов. 20 кг - это 100% z кг - это 61% z = 20 * 61/100 = 12,2 кг Решим полученную систему уравнений методом сложения, умножив второе уравнение на (- 1) и сложив его с первым. 0,1x + 0,16y = 14,3 0,1x + 0,1y = 12,2 0,1x - 0,1x + 0,16y - 0,1y = 14,3 - 12,2 0,06y = 2,1 y = 2,1 : 0,06 = 35 x = (14,3 - 35 * 0,16) * 10 = 87 Найдём содержание кислоты в первом 87%-ном растворе. 0,1 * 87 = 8,7 кг кислоты ответ: в первом растворе содержится 8,7 килограммов кислоты.
Объяснение:
сердечко )
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1