Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
1. Разделим обе части тригонометрического неравенства на √3 и освободимся от иррациональности в знаменателе:
√3tg(3x + π/6) < 1;
tg(3x + π/6) < 1/√3;
tg(3x + π/6) < √3/3.
2. Функция тангенс имеет период π, на промежутке (-π/2, π/2) возрастает, а значение √3/3 принимает в точке π/6:
3x + π/6 ∈ (-π/2 + πk, π/6 + πk), k ∈ Z;
3x ∈ (-π/2 - π/6 + πk, π/6 - π/6 + πk), k ∈ Z;
3x ∈ (-2π/3 + πk, πk), k ∈ Z;
x ∈ (-2π/9 + πk/3, πk/3), k ∈ Z.
ответ: (-2π/9 + πk/3, πk/3), k ∈ Z.
если не правильно, напишите в коменты(
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
1. Разделим обе части тригонометрического неравенства на √3 и освободимся от иррациональности в знаменателе:
√3tg(3x + π/6) < 1;
tg(3x + π/6) < 1/√3;
tg(3x + π/6) < √3/3.
2. Функция тангенс имеет период π, на промежутке (-π/2, π/2) возрастает, а значение √3/3 принимает в точке π/6:
3x + π/6 ∈ (-π/2 + πk, π/6 + πk), k ∈ Z;
3x ∈ (-π/2 - π/6 + πk, π/6 - π/6 + πk), k ∈ Z;
3x ∈ (-2π/3 + πk, πk), k ∈ Z;
x ∈ (-2π/9 + πk/3, πk/3), k ∈ Z.
ответ: (-2π/9 + πk/3, πk/3), k ∈ Z.
если не правильно, напишите в коменты(