3. Решить задачи.
А) Комбинаторные задачи
1) Сколько двузначных чисел, все цифры которых различны,
можно составить из цифр 0; 4 и 2?
2) При встрече 4 школьника обменялись рукопожатиями.
Сколько всего было сделано рукопожатий?
Б) Задачи на перестановку
3) Рассчитайте значение 4! =
4) Государственные флаги некоторых стран состоят из трёх
горизонтальных полос разного цвета. Сколько существует
различных вариантов флагов с белой, синей и красной
полосой?
5) Сколько различных четырёхзначных числа можно
составить из цифр 3, 6, 5 и 8 без повторения их в записи
числа?
6) Сколько различных четырехзначных чисел, в которых
цифры не повторяются, можно составить из цифр 7, 0, 2, 3?
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Пусть скорость медленного гонщика составляет км/мин.
Раз быстрый гонщик обогнал впервые медленного через 48 минут, то с таким же успехом, мы можем переформулировать это утверждение и так: быстрый гонщик через 48 минут опережал медленного на 8 км (длину одного круга). А значит, их относительная скорость удаления составляет: км/мин.
Из найденного следует, что скорость быстрого гонщика мы можем записать, как: км/мин.
Сказано, что медленный гонщик ехал на 17 минут дольше, а значит, если мы вычтем из времени в пути медленного гонщика время в пути быстрого гонщика, то эта разность и должна составить 17 минут. Ясно, что время в пути для каждого гонщика мы можем найти, разделив полный путь трассы на скорость каждого из них, тогда:
Поскольку так, как это скорость,
направленная в заданную сторону (вперёд), то:
Это и есть скорость второго (медленного) гонщика.
Осталось только перевести её в км/ч:
15/6 км/мин = 15 км : 6 мин = 150 км : 60 мин = 150 км : час = 150 км/час.
О т в е т : 150 км.