3. а) анаграммой называется произвольное слово, полученное из данного слова перестановкой букв. сколько анаграмм можно составить из слова «сумма»? б) сколько анаграмм можно составить из слова «сумма» таких, чтобы все гласные буква стояли рядом?
Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
Задание 3. Сумма чисел старого ряда равна 7 * 10 = 70. Новый ряд состоит из 10 + 2 = 12 чисел. Среднее арифметическое нового ряда: (70 + 17 + 18) : 12 = 8,75
Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.
Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?
Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где
A1=A1= (Выбраны 2 белых шара),
Ранжированный ряд: 157, 160, 160, 161, 162, 162, 165, 165, 165, 165, 165, 168, 169, 170, 170, 170, 171, 173, 173, 174, 175, 177, 177, 182, 182, 186.
Средний рост: (157 + 160 + 160 ++ 186) : 26 ≈ 169
Мода ряда: 165
Медиана ряда: (170 + 175) : 2 = 172,5
Задание 2.
Среднее арифметическое: (100 000 + 4 * 20 000 + 20 * 10 000) : 25 = 15200
Мода ряда: 10 000
Медиана ряда: (10 000 + 10 000) : 2 = 10 000
В рекламных целях выгоднее всего использовать среднее арифметическое ряда.
Задание 3.
Сумма чисел старого ряда равна 7 * 10 = 70.
Новый ряд состоит из 10 + 2 = 12 чисел.
Среднее арифметическое нового ряда: (70 + 17 + 18) : 12 = 8,75