Так как a, b, c - последовательные члены арифметической прогрессии, то b и с можно выразить через а и разность прогрессии d:
Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена. Значит, нужно доказать, что:
Выполняем преобразования:
Выражаем b и с через а и d:
Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
Функция определена при тех х, при которых подкоренное выражение неотрицательно. Решаем квадратное неравенство; -х²+4х+5≥0 Находим корни квадратного трёхчлена: х²-4х-5=0 D=(-4)²-4·(-5)=16+20=36=6² x=(4-6)/2=-1 или х=(4+6)/2=5 Ветви параболы у=-х²+4х+5 направлены вниз, неравенству будут удовлетворять -1≤ х≤5 На отрезке [-1;5] функция у=-х²+4х+5 принимает наименьшее значение 0 и наибольшее значение в вершине параболы. Выделим полный квадрат -(х²-4х+4-4-5)=-(х-2)²+9 Координаты вершины (-2;9) Наибольшее значение функции у=-х²+4х+5 равно 9 Значит наименьшее значение функции у=√(-х²+4х+5) равно √0=0 наибольшее равно √9=3 Функция ограничена Множество значений - отрезок [0;3]
Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена.
Значит, нужно доказать, что:
Выполняем преобразования:
Выражаем b и с через а и d:
Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
Решаем квадратное неравенство;
-х²+4х+5≥0
Находим корни квадратного трёхчлена:
х²-4х-5=0
D=(-4)²-4·(-5)=16+20=36=6²
x=(4-6)/2=-1 или х=(4+6)/2=5
Ветви параболы у=-х²+4х+5 направлены вниз, неравенству будут удовлетворять
-1≤ х≤5
На отрезке [-1;5] функция у=-х²+4х+5 принимает наименьшее значение 0 и наибольшее значение в вершине параболы.
Выделим полный квадрат
-(х²-4х+4-4-5)=-(х-2)²+9
Координаты вершины (-2;9)
Наибольшее значение функции у=-х²+4х+5 равно 9
Значит наименьшее значение функции у=√(-х²+4х+5) равно √0=0
наибольшее равно √9=3
Функция ограничена
Множество значений - отрезок [0;3]