Многочлен в левой части можно разложить на множители:
, где A, ..., F - некоторые целые коэффициенты. Раскроем скобки в правой части:
Многочлены равны, когда равны коэффициенты при соотвествующих степенях x. Составим систему уравнений (знак системы не пишу):
AD=2
AE+BD=5
AF+EB+CD=-5
BF+EC=-13
CF=-4
6 неизвестных и всего 5 уравнений - не айс. Но нас то, что A, ..., F - целые числа.
Взглянем на первое и последнее уравнение. Имеем 4 различных варианта значений A, D, C, F. Начинаем рассматривать, по порядку, когда найдем хотя бы одно решение системы, то все будет круто и дальше можно будет не продолжать:
A=1, D=2, C=1, F=-4:
E+2B=5
EB=-3
-4B+E=-13
Не забываем о том, что коэффициенты целые и быстро заключаем, что решением являются числа B=3, E=-1. Вот так повезло, с первого раза нашли подходящую систему. Итак
Многочлен в левой части можно разложить на множители:
, где A, ..., F - некоторые целые коэффициенты. Раскроем скобки в правой части:
Многочлены равны, когда равны коэффициенты при соотвествующих степенях x. Составим систему уравнений (знак системы не пишу):
AD=2
AE+BD=5
AF+EB+CD=-5
BF+EC=-13
CF=-4
6 неизвестных и всего 5 уравнений - не айс. Но нас то, что A, ..., F - целые числа.
Взглянем на первое и последнее уравнение. Имеем 4 различных варианта значений A, D, C, F. Начинаем рассматривать, по порядку, когда найдем хотя бы одно решение системы, то все будет круто и дальше можно будет не продолжать:
A=1, D=2, C=1, F=-4:
E+2B=5
EB=-3
-4B+E=-13
Не забываем о том, что коэффициенты целые и быстро заключаем, что решением являются числа B=3, E=-1. Вот так повезло, с первого раза нашли подходящую систему. Итак
A=1, B=3, C=1, D=2, E=-1, F=-4
Тогда
Уравнение принимает вид:
Дальше решит даже первоклассник