sin x + cos x = 1;
Возведем правую и левую часть выражения в квадрат, тогда получим:
(sin x + cos x) ^ 2 = 1 ^ 2;
sin ^ 2 x + 2 * sin x * cos x + сos ^ 2 x = 1;
(sin ^ 2 x + cos ^ 2 x) + 2 * sin x * cos x = 1;
Так как, по формуле тригонометрии sin ^ 2 x + cos ^ 2 x = 1 и 2 * sin x * cos x = sin (2 * x), тогда получим:
1 + 2 * sin x * cos = 1;
2 * sin x * cos x = 1 - 1;
2 * sin x * cos x = 0;
sin x * cos x = 0;
1) sin x = 0;
x = pi * n, где n принадлежит Z;
2) cos x = 0;
x = pi / 2 + pi * n, где n принадлежит Z.
30
Объяснение:
Чтобы число делилось на 2, его последняя цифра должна быть 0,2,4,6 или 8. К тому же, первая цифра не может быть 0.
Ход решения:
1. находим количество чисел, заканчивающихся на 0,2,4,6,8 (начинаться могут также с 0);
2. находим количество чисел, начинающихся с 0 и заканчивающихся на 2,4,6,8;
3. из первого полученного количества чисел вычитаем второе и получаем результат.
1)
Дано 5 цифр. Последней цифрой числа может быть только 0, 2 или 4. Значит, 3 варианта.
Остаётся 4 цифры. Третью цифру можно выбрать .
Остаётся 3 цифры. Вторую цифру можно выбрать .
Значит, первое количество чисел равно 3⋅4⋅3, или 36.
2)
Дано 5 цифр. Первая цифра числа — 0. Значит, 1 вариант.
Остаётся 4 цифры (1, 2, 3 и 4). Последней цифрой числа может быть только 2 или 4. Значит, 2 варианта.
Остаётся 3 цифры. Третью цифру числа можно выбрать .
Значит, второе количество чисел равно 1⋅2⋅3, или 6.
3) Значит, результат равен 36 − 6, или 30.
sin x + cos x = 1;
Возведем правую и левую часть выражения в квадрат, тогда получим:
(sin x + cos x) ^ 2 = 1 ^ 2;
sin ^ 2 x + 2 * sin x * cos x + сos ^ 2 x = 1;
(sin ^ 2 x + cos ^ 2 x) + 2 * sin x * cos x = 1;
Так как, по формуле тригонометрии sin ^ 2 x + cos ^ 2 x = 1 и 2 * sin x * cos x = sin (2 * x), тогда получим:
1 + 2 * sin x * cos = 1;
2 * sin x * cos x = 1 - 1;
2 * sin x * cos x = 0;
sin x * cos x = 0;
1) sin x = 0;
x = pi * n, где n принадлежит Z;
2) cos x = 0;
x = pi / 2 + pi * n, где n принадлежит Z.
30
Объяснение:
Чтобы число делилось на 2, его последняя цифра должна быть 0,2,4,6 или 8. К тому же, первая цифра не может быть 0.
Ход решения:
1. находим количество чисел, заканчивающихся на 0,2,4,6,8 (начинаться могут также с 0);
2. находим количество чисел, начинающихся с 0 и заканчивающихся на 2,4,6,8;
3. из первого полученного количества чисел вычитаем второе и получаем результат.
1)
Дано 5 цифр. Последней цифрой числа может быть только 0, 2 или 4. Значит, 3 варианта.
Остаётся 4 цифры. Третью цифру можно выбрать .
Остаётся 3 цифры. Вторую цифру можно выбрать .
Значит, первое количество чисел равно 3⋅4⋅3, или 36.
2)
Дано 5 цифр. Первая цифра числа — 0. Значит, 1 вариант.
Остаётся 4 цифры (1, 2, 3 и 4). Последней цифрой числа может быть только 2 или 4. Значит, 2 варианта.
Остаётся 3 цифры. Третью цифру числа можно выбрать .
Значит, второе количество чисел равно 1⋅2⋅3, или 6.
3) Значит, результат равен 36 − 6, или 30.