Можно сказать, что площадь многоугольника - это величина той части плоскости, которую занимает многоугольник. Измерение площадей проводится с выбранной единицы измерения аналогично измерению длин отрезков. За единицу измерения площадей принимают квадрат, сторона которого равна единице измерения отрезков. Так, если за единицу измерения отрезков принят сантиметр, то за единицу измерения площадей принимают квадрат со стороной 1 см. Такой квадрат называется квадратным сантиметром и обозначается см. Аналогично определяется квадратный метр (м), квадратный миллиметр (мм) и т.д.При выбранной единице измерения площадей площадь каждого многоугольника выражается положительным числом. Это число показывает, сколько раз единица измерения и ее части укладываются в данном многоугольнике
Если вопрос правильный, то: 1. числа с одинаковыми основаниями: 2⁴-2³ их можно представить в виде: 2³·2-2³=(выносим общий множитель за скобки) 2³(2-1)=2³, то же самое со сложением.
2. если основания разные, а одинаковы степени, 3⁴+2⁴, то тут нет никаких правил или формул, только прямой счет. Единственный вариант, когда выражение можно свести к первому примеру, например: 6⁴+2⁴ = 2⁴3⁴+2⁴ = 2⁴(3⁴+1). Если будет разность 3⁴-2⁴, то тут можно использовать формулу разности квадратов (3²)²-(2²)²=(3²-2²)(3²+2²), в свою очередь первый множитель можно опять разложить по формуле: (3²-2²)(3²+2²)=(3-2)(3+2)(3²+2²). Ну и для самых любознательный, есть еще формула для разности кубов: а³-b³=(а-b)(а²+аb+b²) и суммы: а³+b³=(а+b)(а²-аb+b²)
1. числа с одинаковыми основаниями: 2⁴-2³ их можно представить в виде: 2³·2-2³=(выносим общий множитель за скобки) 2³(2-1)=2³, то же самое со сложением.
2. если основания разные, а одинаковы степени, 3⁴+2⁴, то тут нет никаких правил или формул, только прямой счет. Единственный вариант, когда выражение можно свести к первому примеру, например: 6⁴+2⁴ = 2⁴3⁴+2⁴ = 2⁴(3⁴+1). Если будет разность 3⁴-2⁴, то тут можно использовать формулу разности квадратов (3²)²-(2²)²=(3²-2²)(3²+2²), в свою очередь первый множитель можно опять разложить по формуле:
(3²-2²)(3²+2²)=(3-2)(3+2)(3²+2²).
Ну и для самых любознательный, есть еще формула для разности кубов: а³-b³=(а-b)(а²+аb+b²)
и суммы: а³+b³=(а+b)(а²-аb+b²)