Войти
Регистрация
Спроси ai-bota
В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Показать больше
Показать меньше
Maguire
29.10.2020 02:38 •
Алгебра
20х^2-17х+4ху+у+63=0 сколько решений есть в этом уравнение
Показать ответ
Ответ:
Polina6002
06.03.2022 16:44
1) y = 8√x + 3x^5 ? 2) y = 5x² +3(1/x -4) ; 3) y = (x^4)/ (3-x) или y =x^4/3 - x ?
1) y '= (8√x + 3x^5 )' = (8√x ) '+ (3x^5)' =8(√x) + 3(x^5)' =8*1/2*(x^(-1/2)) +3*5*x^4=
=4/√x +15x^4.
2) у=(5х² +3(1/x-4))' =(5х² +3/x- 12) ' = (5х²) ' +(3/x) - (12) ' =5*(х²) ' +3*(1/x) - 0 =
5*2x +3(-1/x²) =10x -3/x² .
3)
3a) y '= ((x^4)/(3-x) ) =((x^4)' * (3-x) -(x^4)*(3 -x)')/(3-x)² =((4x³(3 -x) - (x^4)*(-1))/(3-x)²
=(12x³ - 4x^4 + x^4)/(3-x)² =(12x³ -3x^4)/(x-3)² =3x³(4-x)/(x-3)² .
3b) y ' =(x^4/3 - x ) = (x^4/3) - (x ) ' =4/3*(x^1/3) -1 =4/3*∛x -1.
0,0
(0 оценок)
Ответ:
mathmatic2882
19.09.2022 13:44
1) 1) найдите значение производной функции y=cosx-2sinx в точке Xo =3π/2.
y =cosx -2sinx ; Xo =3π/2.
y ' = (cosx -2sinx) ' = (cosx) ' -(2sinx) ' = - sinx - 2cosx .
y(Xo) =y(3π/2) = - sin(3π/2) -2cos(3π/2) = - (-1) -2*0 = 1.
2) найдите точки экстремума и определите их характер y=x^3+x^2-5x-3
(ответ: Xmax=-1(2\3), Xmin=
y ' =(x³ +x² - 5x - 3)' = 3x² +2x -5 = 3(x +5/3)(x -1) .
y ' + - +
- 5/3 max 1 min
3 )Решите уравнение -2sin²x-cosx+1=0
Укажите корни, принадлежащие отрезку П ?
-2sin²x-cosx+1=0 ; x ∈ (π ;2π)
-2(1-cos²x) - cosx +1 = 0;
2cos²x - cosx -1 = 0 ;
производим замену переменной t =cosx .
2t² -t -1 =0 ;
D =1² -4*2(-1) =9 =3² .
t ₁=(1 -3)/(2*2) = -2/4 = -1/2;
t₂=(1+3)/(2*2) = 4/4 = 1.
[ cosx = -1/2 ; cosx = 1.
cosx = -1/2 ⇒ x =(+/-)2π/3 +2π*k , k∈Z ;
cosx = 1 ⇒ x =2π*k , k∈Z .
ответ : 2π/3 .
0,0
(0 оценок)
Популярные вопросы: Алгебра
Nastya26061
18.05.2021 18:24
Найдите координаты точки пересечения графиков у=-2х+4 и у=3х-2...
kazymbietova71
18.05.2021 18:24
Выполните умножение и запишите произведение в виде многочлена стандартного вида (а+3) (4а+1)...
adaman2006
14.07.2020 07:45
Розкладіть на множники многочлен: m^7+9m^6-m^2-9m...
qwerttrewq12345
27.07.2021 20:37
Известно, что два ластика и три тетради стоят 35 грн, а две тетради и три ластика стоят 40 грн. Необходимо выяснить, сколько стоят пять ластиков и шесть тетрадей. P.s: надо решить...
орех15
29.11.2021 19:51
{х+у=70 0,05х+0,4у=0,3*70...
Rainbow619
05.08.2021 21:49
Биссектриса одного из углов прямоугольника делит одну из его сторон на два отрезка длинной 5 см и 6 см. найдите площать...
sofiya13031
10.05.2020 13:35
Как называется верхняя часть дроби ?...
Алиса241111
10.05.2020 13:35
При каком значении х функция у=4х-1 принимает значение, равное 11?...
Galinachlen
10.05.2020 13:35
Найдите область определения функции y=3sinx...
dribinl41
04.11.2022 17:23
При посещении сеанса группой более 10 человек кинотеатр предоставляет скидку в размере 30 р , на каждый билет . найдите стоимость посещения сеанса группой из 12 человек , если сцена...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
1) y '= (8√x + 3x^5 )' = (8√x ) '+ (3x^5)' =8(√x) + 3(x^5)' =8*1/2*(x^(-1/2)) +3*5*x^4=
=4/√x +15x^4.
2) у=(5х² +3(1/x-4))' =(5х² +3/x- 12) ' = (5х²) ' +(3/x) - (12) ' =5*(х²) ' +3*(1/x) - 0 =
5*2x +3(-1/x²) =10x -3/x² .
3)
3a) y '= ((x^4)/(3-x) ) =((x^4)' * (3-x) -(x^4)*(3 -x)')/(3-x)² =((4x³(3 -x) - (x^4)*(-1))/(3-x)²
=(12x³ - 4x^4 + x^4)/(3-x)² =(12x³ -3x^4)/(x-3)² =3x³(4-x)/(x-3)² .
3b) y ' =(x^4/3 - x ) = (x^4/3) - (x ) ' =4/3*(x^1/3) -1 =4/3*∛x -1.
y =cosx -2sinx ; Xo =3π/2.
y ' = (cosx -2sinx) ' = (cosx) ' -(2sinx) ' = - sinx - 2cosx .
y(Xo) =y(3π/2) = - sin(3π/2) -2cos(3π/2) = - (-1) -2*0 = 1.
2) найдите точки экстремума и определите их характер y=x^3+x^2-5x-3
(ответ: Xmax=-1(2\3), Xmin=
y ' =(x³ +x² - 5x - 3)' = 3x² +2x -5 = 3(x +5/3)(x -1) .
y ' + - +
- 5/3 max 1 min
3 )Решите уравнение -2sin²x-cosx+1=0
Укажите корни, принадлежащие отрезку П ?
-2sin²x-cosx+1=0 ; x ∈ (π ;2π)
-2(1-cos²x) - cosx +1 = 0;
2cos²x - cosx -1 = 0 ;
производим замену переменной t =cosx .
2t² -t -1 =0 ;
D =1² -4*2(-1) =9 =3² .
t ₁=(1 -3)/(2*2) = -2/4 = -1/2;
t₂=(1+3)/(2*2) = 4/4 = 1.
[ cosx = -1/2 ; cosx = 1.
cosx = -1/2 ⇒ x =(+/-)2π/3 +2π*k , k∈Z ;
cosx = 1 ⇒ x =2π*k , k∈Z .
ответ : 2π/3 .