Отдельный случай квадратное неравенство вырождается в линейное
а значит выполняется для всех Пусть теперь
квадратное неравенство, чтоб оно выполнялось нужно чтоб ветви параболы были направлены верх (очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется
УчитЫвая второе условие авмтоматически и необходимо вЫполнение неравенства или
теперь рассмотрим второй случай - когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex] итого
;
- с первых двух неравенств (аналогично по рассуждениям относительно первого случая)
- что очевидно верно при условиях обьединяя все получаем что данное неравенство верно при а є
Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{1;3}, |AB|=√(1+9)=√10. BC{3;1}, |BC|=√(9+1)=√10. CD{-1;-3},|CD|=√(1+9)=√10. AD{3;1}, |AD|=√(9+1)=√10. Итак, в четырехугольнике все стороны равны. Ромбом называется параллелограмм, у которого все стороны равны. Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм. У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом. Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат. Следовательно, четырехугольник АВCD - РОМБ. Что и требовалось доказать...
Отдельный случай
квадратное неравенство вырождается в линейное
а значит выполняется для всех
Пусть теперь
квадратное неравенство, чтоб оно выполнялось
нужно чтоб ветви параболы были направлены верх
(очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая
первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется
УчитЫвая второе условие авмтоматически
и необходимо вЫполнение неравенства
или
теперь рассмотрим второй случай
-
когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex]
итого
;
- с первых двух неравенств (аналогично по рассуждениям относительно первого случая)
- что очевидно верно при условиях
обьединяя все
получаем что данное неравенство верно при
а є
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
АВ{1;3}, |AB|=√(1+9)=√10.
BC{3;1}, |BC|=√(9+1)=√10.
CD{-1;-3},|CD|=√(1+9)=√10.
AD{3;1}, |AD|=√(9+1)=√10.
Итак, в четырехугольнике все стороны равны.
Ромбом называется параллелограмм, у которого все стороны равны.
Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм.
У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом.
Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат.
Следовательно, четырехугольник АВCD - РОМБ.
Что и требовалось доказать...