Пусть (10х + у) - неизвестное двузначное число, тогда ху - произведение цифр этого числа. Получаем первое уравнение системы уравнений: 10х + у - ху = 25
Так как неизвестное двузначное число в 5 раз больше суммы своих цифр, получаем второе уравнение системы уравнений: 10х + у = 5(х + у)
Найдем значение х, если y = 5: 10х + 5 - 5х = 25 5х = 25 - 5 5х = 20 х = 20 : 5 х = 4 Получаем двузначное число: 10 * 4 + 5 = 45
Найдем значение у, если х = 5: 10 * 5 + у - 5у = 25 50 - 4у = 25 4у = 50 - 25 4у = 25 у = 25 : 4 у = 6,25 - не удовлетворяет условию, т.к. цифра разряда единиц должна быть натуральным числом (или 0). ответ: 45.
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0
тогда ху - произведение цифр этого числа.
Получаем первое уравнение системы уравнений:
10х + у - ху = 25
Так как неизвестное двузначное число в 5 раз больше суммы своих цифр, получаем второе уравнение системы уравнений:
10х + у = 5(х + у)
Найдем значение х, если y = 5:
10х + 5 - 5х = 25
5х = 25 - 5
5х = 20
х = 20 : 5
х = 4
Получаем двузначное число:
10 * 4 + 5 = 45
Найдем значение у, если х = 5:
10 * 5 + у - 5у = 25
50 - 4у = 25
4у = 50 - 25
4у = 25
у = 25 : 4
у = 6,25 - не удовлетворяет условию, т.к. цифра разряда единиц должна быть натуральным числом (или 0).
ответ: 45.