Угадываем корень: х=3 Подставляем в уравнение: 81+27-72-27-9=0 Сошлось. Значит х=3- корень уравнения. Делим уравнение на корень и получаем х³+4х²+4х+3 Соответственно: (х³+4х²+4х+3)(х-3)=0 Продолжаем в том же духе, угадываем следующий корень. Поломав голову, вышло х=-3. Проверим: -27+36-12+3=0. Сошлось. Таким же образом делим и это уравнение. Получаем х²+х+1=0 Правда тут почему-то нет корней. Не знаю, может я где ошибся. Но получается, что всего тут два корня: х=3, х=-3. Если нужно подробное решение, то могу в вк скинуть, если хочешь.
Одинаковая пропускная означает, что в единицу времени проходит тот же же поток воды. Иными словами совокупная площадь сечений двух исходных труб должна быть равна площади сечения новой трубы. Трубы обычно делают круглыми, значит для расчетов площади сечения мы можем воспользоваться формулами нахождения площади круга. 2*С1 = С2, где С1 - площадь сечения одной из старых труб (они одинаковы, т.к. диаметр одинаков), С2 - площадь сечения новой трубы. С1 = Пи*Д1^2 / 4, С2 = Пи*Д2^2 / 4, где Д1 - диаметр одной из старых труб, Д2 - диаметр новой трубы. 2* Пи*Д1^2 / 4 = Пи*Д2^2 / 4. 2*Д1^2 = Д2^2, Д2 = (2*Д1^2)^1/2. Д2 = 2^1/2 * Д1. (Диаметр новой трубы равен диаметру старой трубы, умноженному на квадратный корень из двух). Значит, при условии, что Д1 = 50, Д2 = 2^1/2 * 50 = [приближенно равно] = 1,414*50 = 70,7.
х=3
Подставляем в уравнение:
81+27-72-27-9=0
Сошлось. Значит х=3- корень уравнения. Делим уравнение на корень и получаем х³+4х²+4х+3
Соответственно: (х³+4х²+4х+3)(х-3)=0
Продолжаем в том же духе, угадываем следующий корень. Поломав голову, вышло х=-3.
Проверим: -27+36-12+3=0. Сошлось.
Таким же образом делим и это уравнение.
Получаем х²+х+1=0
Правда тут почему-то нет корней. Не знаю, может я где ошибся. Но получается, что всего тут два корня:
х=3, х=-3.
Если нужно подробное решение, то могу в вк скинуть, если хочешь.
Иными словами совокупная площадь сечений двух исходных труб должна быть равна площади сечения новой трубы.
Трубы обычно делают круглыми, значит для расчетов площади сечения мы можем воспользоваться формулами нахождения площади круга.
2*С1 = С2, где С1 - площадь сечения одной из старых труб (они одинаковы, т.к. диаметр одинаков), С2 - площадь сечения новой трубы.
С1 = Пи*Д1^2 / 4,
С2 = Пи*Д2^2 / 4, где Д1 - диаметр одной из старых труб, Д2 - диаметр новой трубы.
2* Пи*Д1^2 / 4 = Пи*Д2^2 / 4.
2*Д1^2 = Д2^2,
Д2 = (2*Д1^2)^1/2.
Д2 = 2^1/2 * Д1.
(Диаметр новой трубы равен диаметру старой трубы, умноженному на квадратный корень из двух).
Значит, при условии, что Д1 = 50,
Д2 = 2^1/2 * 50 = [приближенно равно] = 1,414*50 = 70,7.