Х - скорость первого автомобиля. L - расстояние между пунктами. (Х+22) - скорость 2 автом. на втором участке. Тогда с учетом условия: L/Х - время движения 1 автомобиля 0,5L/33+0,5L/(Х+22) - время движения 2 астом. По условию они равны. L/Х =0,5L/33+0,5L/(Х+22) 1/Х=1/66+1/(2Х+44). Умножаем обе части на 66*Х*(Х+22) и избавляемся от знаменателя. Имеем: 66*(Х+22)=Х*(Х+22)+33*Х. Раскрываем скобки и переносим все в правую часть. Х^2+22Х+33Х-66Х-1452=0 (Х^2 - это Х в квадрате) Х^2-11Х-1452=0. Решаем квадратное уравнение Х1= 11/2+кор. квадр из [(11/2)^2+1452]=44 (км/час.) Х2=11/2-кор. квадр из [(11/2)^2+1452]<0 - не имеет смысла ответ: Х=44 км/час.
Х - скорость первого автомобиля.
L - расстояние между пунктами.
(Х+22) - скорость 2 автом. на втором участке.
Тогда с учетом условия:
L/Х - время движения 1 автомобиля
0,5L/33+0,5L/(Х+22) - время движения 2 астом.
По условию они равны.
L/Х =0,5L/33+0,5L/(Х+22)
1/Х=1/66+1/(2Х+44). Умножаем обе части на 66*Х*(Х+22) и избавляемся от знаменателя. Имеем:
66*(Х+22)=Х*(Х+22)+33*Х.
Раскрываем скобки и переносим все в правую часть.
Х^2+22Х+33Х-66Х-1452=0 (Х^2 - это Х в квадрате)
Х^2-11Х-1452=0. Решаем квадратное уравнение
Х1= 11/2+кор. квадр из [(11/2)^2+1452]=44 (км/час.)
Х2=11/2-кор. квадр из [(11/2)^2+1452]<0 - не имеет смысла
ответ: Х=44 км/час.
при а=-4 имеем неравенство
-2*(-4)х+2*(-4)-6<0;
8x-8-6<0;
8x<14;
x<14/8;
при а=-4 неравенство выполняется не для всех действительных значений х.
Теперь пусть а не равно -4. Имеем квадратное неравество. Чтобы оно выполнялось для любого действительного х необходимо два условия
первое (коэфициент при x^2 должен быть меньше 0 - ветви параболы опущены вниз)
a+4<0; a<-4
второе (дискриминант исходного неравенства должен быть отрицательным - и тогда парабола лежит под осью абсцисс)
D<0
D=(-2a)^2-4(a+4)*(2a-6)=4a^2-8a^2-8a+96=-4a^2-8a^2+96
-4a^2-8a^2+96<0
a^2+2a-24>0
(a+6)(a-4)>0
a є (-бесконечность; -6)обьединение(4;+бесконечсть)
обьединяя получаем ответ: а є (-бесконечность; -6)