График представляет собой параболу, ветви направлены вверх (коэффициент при х² положительный). Координата вершины параболы хв=0/3=0, yв=6. Координаты других точек: х= 0,8 1,2 1,6 2 -0,8 -1,2 -1,6 -2 y= 7,92 10,32 13,68 18 7,92 10,32 13,68 18
График во вложенном файле Функция чётная, так как симметрична относительно оси OY Функция не периодическая. Производная y'=6*x. Функция при положительных х возрастает, при отрицательных х убывает. Точка минимума - вершина (в ней производная равна нулю и меняет знак с минуса на плюс при возрастании х), точки максимума - нет.
х= 0,8 1,2 1,6 2 -0,8 -1,2 -1,6 -2
y= 7,92 10,32 13,68 18 7,92 10,32 13,68 18
График во вложенном файле
Функция чётная, так как симметрична относительно оси OY
Функция не периодическая.
Производная y'=6*x. Функция при положительных х возрастает, при отрицательных х убывает.
Точка минимума - вершина (в ней производная равна нулю и меняет знак с минуса на плюс при возрастании х), точки максимума - нет.
a + b = -8
Объяснение:
1 уравнение
x^3 - 4x^2 - x - a = 0
2 уравнение
x^2 - x - b = 0
Если они имеют 2 общих корня, то 2 уравнение имеет 2 корня.
D = 1^2 - 4(-b) = 4b + 1
x1 = (1 - √(4b+1))/2
x2 = (1 + √(4b+1))/2
И оба этих корня должны подходить к 1 уравнению.
Подставляем x1 и x2, получаем систему
{ (1 - √(4b+1))^3/8 - 4*(1 - √(4b+1))^2/4 - (1 - √(4b+1))/2 - a = 0
{ (1 + √(4b+1))^3/8 - 4*(1 + √(4b+1))^2/4 - (1 + √(4b+1))/2 - a = 0
Раскрываем скобки
{ (1-3√(4b+1)+3(4b+1)-(4b+1)√(4b+1))/8-(1-2√(4b+1)+(4b+1))-1/2+√(4b+1)/2-a=0
{ (1+3√(4b+1)+3(4b+1)+(4b+1)√(4b+1))/8-(1+2√(4b+1)+(4b+1))-1/2-√(4b+1)/2-a=0
После нескольких тождественных преобразований получаем:
{ -5b/2 - 2 - b√(4b+1)/2 + 2√(4b+1) - a = 0
{ -5b/2 - 2 + b√(4b+1)/2 - 2√(4b+1) - a = 0
Складываем уравнения
-5b/2 - 2 - b√(4b+1)/2 + 2√(4b+1) - a - 5b/2 - 2 + b√(4b+1)/2 - 2√(4b+1) - a = 0
-5b - 4 - 2a = 0
a = -5b/2 - 2
Подставляем в любое уравнение
-5b/2 - 2 - b√(4b+1)/2 + 2√(4b+1) + 5b/2 + 2 = 0
- b√(4b+1)/2 + 2√(4b+1) = 0
b = 4
a = -5*4/2 - 2 = -10 - 2 = -12
Сумма a + b = 4 - 12 = -8