Пусть х рядов было в зале , по у мест в каждом ряду всего мест х*у=80 тогда после ремонта стало (х-3) ряда , по (у+4) мест (х-3)*(у+4)=84 х*у=80 (х-3)*(у+4)=84 ху=80 ху -3у+4х-12=84 ху=80 80-3у+4х-12=84 ху=80 ⇒ х=80/у 4х-3у =16 ху=80 ⇒ х=80/у 4*(80/у) -3у =16 (320/у) -3у -16=0 домножим на у , избавимся от знаменателя 320 -3у²-16у=0 3у²+16у-320=0 d= 256+3840= 4096 √d= 64 y=(-16+64)/6= 8 мест ⇒ x=80/8 =10 рядов у=(-16-64)/6 < 0 не подходит ответ : до ремонта было 10 рядов по 8 мест
ответ:Нам нужно разложить на множители выражение ac - ad - 5bc + 5bd для этого сгруппируем попарно первое со вторым и третье с четвертым слагаемые и вынесем общий множитель за скобки.
ac - ad - 5bc + 5bd = (ac - ad) - (5bc - 5bd);
Из первой скобки вынесем a, а из второй 5b, получим:
(ac - ad) - (5bc - 5bd) = a(c - d) - 5b(c - d).
Рассмотрим полученное выражение. В результате мы получили разность двух выражений каждое из которых содержит скобку (c - d), вынесем ее как общий множитель.
ответ:Нам нужно разложить на множители выражение ac - ad - 5bc + 5bd для этого сгруппируем попарно первое со вторым и третье с четвертым слагаемые и вынесем общий множитель за скобки.
ac - ad - 5bc + 5bd = (ac - ad) - (5bc - 5bd);
Из первой скобки вынесем a, а из второй 5b, получим:
(ac - ad) - (5bc - 5bd) = a(c - d) - 5b(c - d).
Рассмотрим полученное выражение. В результате мы получили разность двух выражений каждое из которых содержит скобку (c - d), вынесем ее как общий множитель.
a(c - d) - 5b(c - d) = (с - d)(a - 5b).
ответ: (с - d)(a - 5b).
Объяснение: