Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
Объяснение:
https://tex.z-dn.net/?f=%20%5Csqrt%7B11-4%20%5Csqrt%7B7%7D%7D%2B%20%5Csqrt%7B16-6%20%5Csqrt%7B7%7D%7D%3D%20%5Csqrt%7B7-2%2A2%20%5Csqrt%7B7%7D%2B4%7D%2B%5Csqrt%7B9-2%2A3%2A%5Csqrt%7B7%7D%2B7%7D%3D%20%5C%5C%20%3D%5Csqrt%7B%28%5Csqrt%7B7%7D%29%5E2-2%2A2%20%5Csqrt%7B7%7D%2B2%5E2%7D%2B%5Csqrt%7B3%5E2-2%2A3%2A%5Csqrt%7B7%7D%2B%28%5Csqrt%7B7%7D%29%5E2%7D%3D%20%5C%5C%20%3D%5Csqrt%7B%28%5Csqrt%7B7%7D-2%29%5E2%7D%2B%5Csqrt%7B%283-%20%5Csqrt%7B7%7D%29%5E2%7D%3D%7C%5Csqrt%7B7%7D-2%7C%2B%7C3-%20%5Csqrt%7B7%7D%7C%3D%20%5C%5C%20%3D%5Csqrt%7B7%7D-2%2B3-%20%5Csqrt%7B7%7D%3D1
Это ссылка!
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.