1 Вариант Ш Варланг a) , 12x 311 ay 15x --- E IL F 3xy :-) B) , -y 6xy 3X x-3 s+2 912 FF F - . - No 13 - F ter le LE CARE - F FORFF = TITLE LES EFT ER NESE RE LE lah 100%
1) Исследуем функцию по общему виду. а) Область определения: x∈R б) Вертикальных асимптот нет, функция везде определена. в) Пересечение с осями. с Ох: y=0 x⁴ -10x₂ +9 =0 Замена: x² = t t² - 10t +9 =0 t₁+t₂ = 10 t₁*t₂ = 9 t₁ = 9 t₂ = 1 x₁₂ = √9 = +-3 x₃₄ = √1 = +-1 Пересечение Oy: x=0 y(0) = 0⁴ + 10*0² + 9= 9 г) Функция четная д) Асимптоты наклонные: y = kx+b k = ∞ Наклонных асимптот нет
2) Исследуем функцию с первой производной. y' = (x⁴ -10x² +9)' = 4x³ -20x Приравняем производную к нулю: 4x³ -20x = 0 4x(x² - 5) = 0 x = 0 или x =+-√5 Посмотрим как ведет себя функция на этих отрезках.(см. №1) x = +-√5 - точка минимума, ymin = -16 x = 0 - точка максимума y max = 9
3) Исследуем функцию с второй производной. y'' = 12x² - 20 Приравняем к 0 12x²-20 = 0 x = +-√20/12 Функция знак не меняет - значит точек перегиба нет. 4) Сам график. см №2
a) Найдите значение дроби (2a+b) /(3a+4b) ,если известно ,что b/a-3
(2a+b) / (3a+4b) = (2+b/a) / (3+4*b/a) =(2+3) /(3+4*3) = 5/15 = 1/3 .
б) Преобразуйте выражение
( 5/(a²+10a+25) ) : ( (a²+10a) /(a² -25) -(a+5)/(a-5) ) и найдите его числовое величина при a = -2 .
( 5/(a²+10a+25) ) : ( (a²+10a) /(a² -25) - (a+5)/(a-5) ) =
( 5/(a²+10a+25) ) : ( (a²+10a) /(a -5)(a+5) - (a+5)/(a-5) )
( 5/(a+5)²) : ( (a²+10a -(a+5)² ) / (a -5)(a+5) )=
( 5/(a+5)²) : ( ( a²+10a -a²-10a -25 ) / (a -5)(a+5) ) =
(5/(a+5)² ) : ( (-25 ) / (a -5)(a+5) ) =
( 5/(a+5)² ) * ( (5- a)(a+5) / 25 ) = (5 -a) / 5(a+5) [ a = -2] =
= ( 5 -(-2) ) /5( -2+5) = 7 / 15.
Объяснение:
а) Область определения: x∈R
б) Вертикальных асимптот нет, функция везде определена.
в) Пересечение с осями.
с Ох:
y=0
x⁴ -10x₂ +9 =0
Замена: x² = t
t² - 10t +9 =0
t₁+t₂ = 10
t₁*t₂ = 9
t₁ = 9
t₂ = 1
x₁₂ = √9 = +-3
x₃₄ = √1 = +-1
Пересечение Oy:
x=0
y(0) = 0⁴ + 10*0² + 9= 9
г) Функция четная
д) Асимптоты наклонные:
y = kx+b
k = ∞
Наклонных асимптот нет
2) Исследуем функцию с первой производной.
y' = (x⁴ -10x² +9)' = 4x³ -20x
Приравняем производную к нулю:
4x³ -20x = 0
4x(x² - 5) = 0
x = 0 или x =+-√5
Посмотрим как ведет себя функция на этих отрезках.(см. №1)
x = +-√5 - точка минимума, ymin = -16
x = 0 - точка максимума y max = 9
3) Исследуем функцию с второй производной.
y'' = 12x² - 20
Приравняем к 0
12x²-20 = 0
x = +-√20/12
Функция знак не меняет - значит точек перегиба нет.
4) Сам график.
см №2