ответ: 9,62 км/час
Объяснение:
Решение.
Пусть скорость теплохода равна х км/час. Тогда
скорость по течению равна х+3 км/час,
а против течения -- х-3 км/час.
Время на движение по течению затрачено
S=vt; t=10/(x+3) часа
Время на движение против течения затрачено
t=8/(x-3) часа.
Общее время равно 2 часа.
Составим уравнение:
10/(х+3) + 8/(х-3)=2;
10(х-3) + 8(х+3)=2(х+3)(x-3);
10x-30 + 8x+24 = 2x²-18;
2x² - 18x - 12=0;
x² - 9x- 6 =0;
x1=9.62 км/час - скорость теплохода в стоячей воде
х2 = -0,623 - не соответствует условию
1920; 1984
Ясно, что n > k
Предположим, что n>2^11 = 2048, но тогда
min(2^n - 2^k) = 2^12 - 2^11 =2048 (min - минимально возможно значение)
Это нас не устраивает, ибо XX век это все года принадлежащие промежутку: [1901; 2000]
Аналогично, если n<2^11, то
max(2^n - 2^k) = 2^10 - 2^1 =1022 (max - максимально возможное значение)
Это так же не укладывается в интервал: [1901; 2000]
Таким образом, n = 2^11, а для k тогда остается только два варианта:
k= 6; 7
То есть существует только два таких года:
1) 2^11 - 2^6 = 2048 - 64 = 1984
2) 2^11 - 2^7 = 2048 - 128 = 1920
Если не помните наизусть, приложил табличку степеней двоек.
ответ: 9,62 км/час
Объяснение:
Решение.
Пусть скорость теплохода равна х км/час. Тогда
скорость по течению равна х+3 км/час,
а против течения -- х-3 км/час.
Время на движение по течению затрачено
S=vt; t=10/(x+3) часа
Время на движение против течения затрачено
t=8/(x-3) часа.
Общее время равно 2 часа.
Составим уравнение:
10/(х+3) + 8/(х-3)=2;
10(х-3) + 8(х+3)=2(х+3)(x-3);
10x-30 + 8x+24 = 2x²-18;
2x² - 18x - 12=0;
x² - 9x- 6 =0;
x1=9.62 км/час - скорость теплохода в стоячей воде
х2 = -0,623 - не соответствует условию
1920; 1984
Объяснение:
Ясно, что n > k
Предположим, что n>2^11 = 2048, но тогда
min(2^n - 2^k) = 2^12 - 2^11 =2048 (min - минимально возможно значение)
Это нас не устраивает, ибо XX век это все года принадлежащие промежутку: [1901; 2000]
Аналогично, если n<2^11, то
max(2^n - 2^k) = 2^10 - 2^1 =1022 (max - максимально возможное значение)
Это так же не укладывается в интервал: [1901; 2000]
Таким образом, n = 2^11, а для k тогда остается только два варианта:
k= 6; 7
То есть существует только два таких года:
1) 2^11 - 2^6 = 2048 - 64 = 1984
2) 2^11 - 2^7 = 2048 - 128 = 1920
Если не помните наизусть, приложил табличку степеней двоек.