Вообще тебе такое никто не объяснит (именно само преобразование), просто есть разные формулы для выражения синуса, в первом случае формула имеет вид:
Пусть задано следующее уравнение:
sin(x) = b
x = (-1)^k * arcsin b + πk, k ∈ ℤ
Это формула общего вида, но есть и развёрнутая формула, как во втором случае:
[ x = arcsin b + 2πn, ℕ ∈ ℤ
[ x = π - arcsin b + 2πn, ℕ ∈ ℤ
Кстати, нужно учитывать, что, используя эти формулы, должны выполняться следующие критерии: |b| ≤ 1 и b ∈ [ - π/2 ; π/2 ]
Т.е. я виду к тому, что просто выполнили равносильный переход, зная эти формулы.
Если что непонятно, спрашивай ещё)
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z
Вообще тебе такое никто не объяснит (именно само преобразование), просто есть разные формулы для выражения синуса, в первом случае формула имеет вид:
Пусть задано следующее уравнение:
sin(x) = b
x = (-1)^k * arcsin b + πk, k ∈ ℤ
Это формула общего вида, но есть и развёрнутая формула, как во втором случае:
[ x = arcsin b + 2πn, ℕ ∈ ℤ
[ x = π - arcsin b + 2πn, ℕ ∈ ℤ
Кстати, нужно учитывать, что, используя эти формулы, должны выполняться следующие критерии: |b| ≤ 1 и b ∈ [ - π/2 ; π/2 ]
Т.е. я виду к тому, что просто выполнили равносильный переход, зная эти формулы.
Если что непонятно, спрашивай ещё)