1. Преобразуйте в многочлен: а) (x - 5)2; б) (6х + y)2;
в) (3а - 2b) 3; г) (5с - 1) (5с + 1).
2. У выражение: (x - 8)2 - (64 + 3x).
3. Разложите на множители: а) y2 - 144; б) 16х2 - 8ху + у2.
4. Решите уравнение: а) x2 – 49 = 0; б) (5 - a)2 - a (a - 0,5) = 6.
5. Выполните действия: а) (у2 - 2а) (2а + у2); б) (3х2 + х)2.
6. Разложите на множители: а) 4х2y2 - 9а4; б) 25а2 - (а + 3)2.
Заметим, что ав=-1, действительно (2+√5)*(2-√5)=4-5=-1 и корень кубический из этого числа тоже равен -1. Кроме того , заметим, что а^3 +b^3=4
Воспользуемся тождеством (a+b)^3=a^3+b^3+3ab*(a+b)
Учитывая обозначения, и, замеченные свойства слагаемых, получим:
с^3=4-3c
c^3-1=3-3c
(c-1)*(c^2+c+1)=-3*(c-1)
Таким образом, видим, что с=1 - решение этого уравнения.
Поделим обе части на с-1.
Получим: c^2+c+0,25=-3,75 или (с+0,5)^2=-3,75 , что невозможно.
Значит решение единственно, с=1. Искомая сумма равна 1.