Пусть сторона малой плитки - х, тогда её площадь - х*х = х^2, тогда площадь ванной 180*х^2 Так же пусть сторона большой плитки - у, тогда площадь плитки - у*у = у^2, тогда площадь ванной 80*у^2 Так же из условия известно, что сторона большой плитки на 5 см больше,чем сторона маленькой, тогда у-х=5, следовательно мы получили систему уравнений:
Где подходит только х=10, тогда у=10+5=15, тогда площадь ванной равна 10*10*180=18000 см квадр = 1,8 м квадр или 15*15*80=18000 см квадр = 1,8 м квадр.
Можно, например, использовать непрерывность функции f(x) = (x−a)(x−b)+(x−a)(x−c)+(x−b)(x−c) и исследовать её поведение.
а) при x→±∞: y→±∞ б) в силу симметрии функции относительно параметров a, b, c без ограничения общности можно считать, что a≤b≤c f(x=a) = (a−b)(a−c) f(x=b) = (b−a)(b−c) f(x=c) = (c−a)(c−b) б1) пусть сначала все числа a, b, c различны: a<b<c f(x=a) > 0 f(x=b) < 0 f(x=c) > 0
Значит, f(x) меняет знак трижды и, следовательно, имеет как минимум три корня: на интервалах (−∞,a), (a,b), (b,c).
б2) если хотя бы два числа из тройки (a,b,c) совпадают, то хотя бы одно из чисел a, b, c будет корнем уравнения f(x)=0.
тогда площадь ванной 180*х^2
Так же пусть сторона большой плитки - у, тогда площадь плитки - у*у = у^2,
тогда площадь ванной 80*у^2
Так же из условия известно, что сторона большой плитки на 5 см больше,чем сторона маленькой, тогда у-х=5, следовательно мы получили систему уравнений:
Где подходит только х=10, тогда у=10+5=15,
тогда площадь ванной равна 10*10*180=18000 см квадр = 1,8 м квадр
или 15*15*80=18000 см квадр = 1,8 м квадр.
ответ: пол в ванной 1,8 м квадр.
NY444©
f(x) = (x−a)(x−b)+(x−a)(x−c)+(x−b)(x−c)
и исследовать её поведение.
а) при x→±∞: y→±∞
б) в силу симметрии функции относительно параметров a, b, c без ограничения общности можно считать, что a≤b≤c
f(x=a) = (a−b)(a−c)
f(x=b) = (b−a)(b−c)
f(x=c) = (c−a)(c−b)
б1) пусть сначала все числа a, b, c различны: a<b<c
f(x=a) > 0
f(x=b) < 0
f(x=c) > 0
Значит, f(x) меняет знак трижды и, следовательно, имеет как минимум три корня: на интервалах (−∞,a), (a,b), (b,c).
б2) если хотя бы два числа из тройки (a,b,c) совпадают, то хотя бы одно из чисел a, b, c будет корнем уравнения f(x)=0.