Очевидно, что p и q - целые корни трехчлена. Пусть в силу симметрии задачи относительно p и q,возьмем p=p1 произвольно простым. Тогда по теореме разложения на множители: f(x)=(x-p1)*(x-q) F(11)=(11-p1)*(11-q)=p2 p2-простое. Тк p2 простое ,то 11-p1=+-1 либо 11-p1=+-p2 1) p1=12 или p1=10 ,невозможно Тк 10 и 12 не простые числа. 2) p1+-p2=11 Предположим, что простые числа p1 и p2 нечетные,тогда их сумма(разность) четное число,что невозможно,значит хотя бы одно из них четно,а значит равно 2. Положим что p1=2,тогда: +-p2=11-2=9 (невозможно),тк 9 число -составное. Значит p2=2 p1+-2=11 p1=13 или p1=9 (не подходит) Откуда: p1=p=13 ;p2=2 (11-p1)*(11-q)=2 -2*(11-q)=2 11-q=-1 q=10 p+q=13+10=23. ответ :23
3sin²x-2(sin²x+cos²x)-sinxcosx=0
3sin²x-2sin²x-2cos²x-sinxcosx=0
sin²x-sinxcosx-2cos²x=0
(sin²x/cos²x) - (sinxcosx/cos²x) - (2cos²x/cos²x)=(0/cos²x)
tg²x - tgx -2=0
t=tgx
t² -t-2=0
D=(-1)² -4*(-2)=1+8=9
t₁=(1-3)/2= -1
t₂=(1+3)/2=2
При t=-1
tgx= -1
x= -п/4 + пк, к∈Z
На промежутке [-п; 3п/2]:
при к=0 х= -п/4;
при к=1 х= -п/4 + п = 3п/4.
При t=2
x=arctg2 + пк, к∈Z
На промежутке [-п; 3п/2] = [ -180°; 270°]:
arctg 2 ≈ 63°
при к= -1 х= arctg2 - п= 63° - 180°= - 117°
при к=0 х=arctg2
при к=1 х=arctg2 + п=63° + 180°=243°
ответ: а) -п/4 + пк, к∈Z;
arctg2 + пк, к∈Z.
б) arctg2 -п; - п/4; arctg2; 3п/4; arctg2 + п.