В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
холера678
холера678
21.10.2022 15:11 •  Алгебра

1. найдите тангенс угла наклона касательной,проведенной к графику данной функции через его точку с указанной абсциссой: f(x)=8x-x^4, x0= -2 2. докажите,что касательные, проведенные к графику данной функции f(x) в его точках
с абсциссами x1 и x2, параллельны: f(x)=1+sin2x, x1=0, x2= пи

Показать ответ
Ответ:
Dadahkkkaaa001
Dadahkkkaaa001
24.05.2020 04:57
1
F(x)=8x-x²
tga=F`(x0)
F`(x)=8-2x
F`(-2)=8+4=12
tga=12
2
f(x)=1+sin2x
f`(x)=1+2cos2x
f(0)=1
f`(0)=1+2=3
y1=1+3(x-0)=3x+1
f(π)=1
f`(π)=1+2=3
y2=1+3(x-π)=3x+1-3π
коэффициенты прямых у1 и у2 равны,значит прямые параллельны
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота