1. Найдите ординату точки графика функции у = 2х2 +3х – 4, абсцисса которой 1.
2. Найдите положительную абсциссу точки графика функции у = 2х2 – 3х – 4, ордината которой равна 5.
3. Найдите коэффициент а в функции у = ах2 – 3, проходящей через точку с координатами (–3; 6).
4. Найдите абсциссу точки пересечения графиков функций у = х2 + 45 и у = х2 + 5х.
нужно
Пусть сторона куба при распиливании была разделена на х частей.
Тогда неокрашенных кубиков (внутренних) будет (х-2)^3, а число кубиков, у которой окрашена ровно одна грань (кубики на гранях большого, не прилежащие к ребрам) равно 6·(х-2)^2.
Получаем уравнение (x-2)^3 = 6·(x-2)^2 или x-2 = 6, x = 8
Куб распилили на 8^3 = 512 кубиков.
——————————————————————
Кубиков с 3 окрашенными гранями – 8
Кубиков с 2 окрашенными гранями – 6·12 = 72
Кубиков с 1 окрашенной гранью – 6·6·6 = 216
Неокрашенных кубиков – 6·6·6 = 216
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума