1. Какие одночлены называют подобными? Приведите пример двух подобных одночленов и пример двух неподобных одночленов
2. Будет ли сумма или разность двух подобных одночленов од
ночленом? Приведите два соответствующих примера.
3. Будет ли сумма или разность двух неподобных одночленов
одночленом?
4. Используя переменные тип, составьте одночлен с коэффици-
ентом 36 и представьте его в виде суммы одночленов несколь-
кими
5. В каком случае сумма двух подобных одночленов, содержа-
щих бувенные части, является числом? Что это за число?
5²¹ * 5 ⁻²³= 5²¹⁺⁽⁻²³⁾ = 5⁻² = 1/5² = 1/25 = 0.04
3⁻⁸ / 3⁻⁹ = 3⁻⁸⁻⁽⁻⁹⁾ = 3⁻⁸⁺⁹ = 3¹ = 3
(2²)⁻³ = 2²*⁽⁻³⁾ = 2⁻⁶ = 1/2⁶ = 1/64
2.
(a⁻³)⁵ * a¹⁸ = a⁻³*⁵ ⁺¹⁸ = a⁻¹⁵⁺¹⁸ = a³
2.4x⁻⁸y⁵ * 5x⁹y⁻⁷ = (2.4 * 5) * x⁻⁸⁺⁹ *y⁵⁺⁽⁻⁷⁾ = 12x¹ y⁻² = 12xy⁻²
3.
(1/4 * x⁻²y⁻³) ⁻² = (2⁻² x⁻²y⁻³)⁻² = 2⁴x⁴y⁶ = 16x⁴y⁶
(5x⁻¹ /3y⁻²) * 15x³y = (5* x⁻¹ * (3 * 5 ) * x³ *y¹ ) / (3y⁻²) =
= (5² * 3¹ * x⁻¹⁺³ y¹)/(3¹*y⁻²) = 5² * 3¹⁻¹ *x² * y¹⁻⁽⁻²⁾ = 25x²y³
4.
(4 ⁻⁶ * 16)/(64⁻⁵) = (4⁻⁶ * 4²) / (4³)⁻⁵ = 4⁻⁶⁺²⁻⁽⁻¹⁵⁾ = 4⁻⁴⁺¹⁵ = 4¹¹
5.
(2.5 * 10⁷) * (6.2 * 10⁻¹⁰) = (2.5*6.2) * 10⁷⁺⁽⁻¹⁰⁾ = 15.5 * 10⁻³
6.
(x ⁻¹ - y )(x - y ⁻¹)⁻¹ = (1/x - y )(x - 1/y) ⁻¹ =
= ( (1-xy)/x ) * ( (xy - 1)/y ) ⁻¹ =
= (1-xy)/x * y/(xy - 1) =
= (1 - xy)/x * ( - y/(1 -xy) ) =
= - y/x = - yx⁻¹
Думаю, достаточно...