пусть х(см) - длина параллелепипеда. тогда х-5(см) - ширина параллелепипеда, х+2(см) - высота параллелепипеда. так как объём равен 240 см^3, составим уравнение:
теперь из полученного выражения вычтем один, причем вычесть его мы можем из любого слагаемого 1989*2*994+1989-1=1989*2*994+1988=1989*2*994+2*994 как мы видим, оба слагаемых кратны 994, следовательно и сумма будет делится 994, аналогично мы можем возвести в любую степень или домножить на любое число
y^2+2xy+y^2=(x+y)^2=9
x+y=sqrt(9)=3
Объяснение:
1) =1,2b(b^3-a^3)=1,2b(b-a)(b^2+ab+b^2)
2) =1,8x^4y^2(2y-1)(2y+1)
пусть х(см) - длина параллелепипеда. тогда х-5(см) - ширина параллелепипеда, х+2(см) - высота параллелепипеда. так как объём равен 240 см^3, составим уравнение:
х * (х-5) * (х+2) = 240
1989*1989=1989(1988+1)=1989(2*994+1)=1989*2*994+1989
теперь из полученного выражения вычтем один, причем вычесть его мы можем из любого слагаемого 1989*2*994+1989-1=1989*2*994+1988=1989*2*994+2*994 как мы видим, оба слагаемых кратны 994, следовательно и сумма будет делится 994, аналогично мы можем возвести в любую степень или домножить на любое число
1/2(cos(2x-3x)-cos(2x+3x))+cos5x=0
1/2cosx-1/2cos5x+cos5x=0
1/2cosx+1/2cos5x=0
cosx+cos5x=0
2cos3xcos2x=0
cos3x=0 cos2x=0
3x=π/2+πn 2x=π/2+πk
x=π/6+πn/3 n∈Z x=π/4+πk/2 k∈Z
2)cosx-cos3xcos2x=0
cosx-1/2(cos(3x-2x)+cos(3x+2x))=0
cosx-1/2cosx-1/2cos5x=0
1/2cosx-1/2cos5x=0
cosx-cos5x=0
2sin3xsin2x=0
sin3x=0 sin2x=0
3x=πn 2x=πk
x=πn/3 n∈Z x=πk/2 k∈Z
3)sin2xcos5x+sin3x=0
1/2(sin(-3x)+sin7x)+sin3x=0
-1/2sin3x+1/2sin7x+sin3x=0
1/2sin3x+1/2sin7x=0
sin3x+sin7x=0
2sin5xcos(-2x)=0
2sin5xcos2x=0
sin5x=0 cos2x=0
5x=πn 2x=π/2+πk
x=πn/5 n∈Z x=π/4+πk/2 k∈Z
4)sin7x-cos3xsin4x=0
sin7x-1/2(sin(-x)+sin7x)=0
sin7x+1/2sinx-1/2sin7x=0
1/2sin7x+1/2sinx=0
sin7x+sinx=0
2sin4xcos3x=0
sin4x=0 cos3x=0
4x=πn 3x=π/2+πk
x=πn/4 n∈Z x=π/6+πk/3 k∈Z