1)дана функция y=x^2+6x+8. найдите: а)промежутки возрастания и убывания функции б)точки экстремума в)наибольшее и наименьшее значения функции на отрезке [-4,1] 2)составьте уравнение касательной к графику функции y=x^2 в точке x0=2 3)решить неравенство методом интервалов x^2-1/x+7 > 0 , со всеми рисунками, и с решением.
Приравниваем производную функции к нулю
а) Найдем промежутки возрастания и убывания функции:
_____-___(-3)___+____
Функция возрастает на промежутке , а убывает -
б) Найти точки экстремума.
В точке х=-3 производная функции меняет знак с (-) на (+), следовательно, х=-3 - точка минимума.
в) Наибольшее и наименьшее значение функции на отрезке [-4;1].
Найдем значения функции на концах отрезка.
- наименьшее
- наибольшее
Пример 2. Общий вид уравнения касательной имеет вид:
1. Найдем значение функции в точке х0=2
2. Производная функции:
3. Вычислим значение производной функции в токе х0=2
Искомое уравнение касательной:
Пример 3.
Решить неравенство методом интервалов
Решение:
Рассмотрим функцию
Область определения функции:
Приравниваем функцию к нулю:
Находим теперь решение неравенства
____-__(-7)___+__(-1)___-___(1)___+____
ответ:
y=x²+6x+8=(x+3)²-1
Парабола у=х²,ветви вверх,вершина в точке (-3;-1)
а)убывает при х∈(-∞;-3)
возрастает при х∈(-3;∞)
б)х=-3 точка экстремума
в)у(-4)=(-4+3)²-1=0
у(-3)=-1 наим
у(1)=(1+3)²-1=16-1=15 наиб
2
у=f(x0)+f`(x0)(x-x0) уравнение касательной
f(x0)=2²=4
f`(x)=2x
f`(x0)=2*2=4
y=4+4(x-2)=4+4x-8=4x-4 касательная
3
(x-1)(x+1)/(x+7)>0
x=1 x=-1 x=-7
_ + _ +
(-7)(-1)(1)
x∈(-7;-1) U (1;∞)