x−3∣≥1.8
x-3 \geq 1.8x−3≥1.8 или x-3 \leq -1.8x−3≤−1.8
x \geq 1.8+3x≥1.8+3 или x \leq -1.8+3x≤−1.8+3
x \geq 4.8x≥4.8 или x \leq 1.2x≤1.2
[1.2][4.8]
xx ∈ (-(− ∞ ;1.2];1.2] ∪ [4.8;+[4.8;+ ∞ ))
2)
|2-x|\ \textgreater \ \frac{1}{3}∣2−x∣ \textgreater 31
2-x\ \textgreater \ \frac{1}{3}2−x \textgreater 31 или 2-x\ \textless \ - \frac{1}{3}2−x \textless −31
-x\ \textgreater \ \frac{1}{3}-2−x \textgreater 31−2 или -x\ \textless \ - \frac{1}{3} -2−x \textless −31−2
x\ \textless \ 1 \frac{2}{3}x \textless 132 или x\ \textgreater \ 2 \frac{1}{3}x \textgreater 231
(1 2/3)(2 1/3)
xx ∈ (-(− ∞ ;1\frac{2}{3});132) ∪ (2\frac{2}{3};+(232;+ ∞ ))
3)
| 3-x|\ \textless \ 1.2∣3−x∣ \textless 1.2
\left \{ {{3-x\ \textless \ 1.2} \atop {3-x\ \textgreater \ -1.2}} \right.{3−x \textgreater −1.23−x \textless 1.2
\left \{ {{-x\ \textless \ 1.2-3} \atop {-x\ \textgreater \ -1.2-3}} \right.{−x \textgreater −1.2−3−x \textless 1.2−3
\left \{ {{-x\ \textless \ -1.8} \atop {-x\ \textgreater \ -4.2}} \right.{−x \textgreater −4.2−x \textless −1.8
\left \{ {{x\ \textgreater \ 1.8} \atop {x\ \textless \ 4.2}} \right.{x \textless 4.2x \textgreater 1.8
(1.8)(4.2)
xx ∈ (1.8;4.2)(1.8;4.2)
4)
|4+x | \leq 1.8∣4+x∣≤1.8
\left \{ {{4+x \leq 1.8} \atop { 4+x \geq -1.8}} \right.{4+x≥−1.84+x≤1.8
71.
1) 0.7√100-1/3√36= 0.7*10-1/3*6=7-6/3=7-2=5
2)√16*√0.25+√5³-4=4*0.5+√125-4=2+√121=2+11=13
3)3√0.81-√9²+12²=3*0.9-√81+144=2.7-√225=2.7-15=-12.3
4)√7 1/9+√3 1/16 - 0.04√90000= √64/9+√49/16-0.04*300=8/3+7/4-12=2 2/3+1 3/4-12
72.
1)(√11)²-√1.44=11-1.2=9.8
2)(2√13)²-(5√8)²=2*13-5*8=26-40=-14
3)14(-1/7√15)²-1/8(2√6)²=14(-1/7*15)-1/8(2*6)=14*(-15/7)-1/8*12=-210/7-12/8=-30-1.5=-31.5
4)√529-(1/2√84)²=23-(1/2*84)=23-84/2=23-42=-19
Объяснение:
1)1*6/3(дробь)=6/3(сокращаем дробь)=2/1(1 не пишем)
/ - обозначение дроби.
Жирные числа - обозначение целых (7(7 целых),3(целых))
x−3∣≥1.8
x-3 \geq 1.8x−3≥1.8 или x-3 \leq -1.8x−3≤−1.8
x \geq 1.8+3x≥1.8+3 или x \leq -1.8+3x≤−1.8+3
x \geq 4.8x≥4.8 или x \leq 1.2x≤1.2
[1.2][4.8]
xx ∈ (-(− ∞ ;1.2];1.2] ∪ [4.8;+[4.8;+ ∞ ))
2)
|2-x|\ \textgreater \ \frac{1}{3}∣2−x∣ \textgreater 31
2-x\ \textgreater \ \frac{1}{3}2−x \textgreater 31 или 2-x\ \textless \ - \frac{1}{3}2−x \textless −31
-x\ \textgreater \ \frac{1}{3}-2−x \textgreater 31−2 или -x\ \textless \ - \frac{1}{3} -2−x \textless −31−2
x\ \textless \ 1 \frac{2}{3}x \textless 132 или x\ \textgreater \ 2 \frac{1}{3}x \textgreater 231
(1 2/3)(2 1/3)
xx ∈ (-(− ∞ ;1\frac{2}{3});132) ∪ (2\frac{2}{3};+(232;+ ∞ ))
3)
| 3-x|\ \textless \ 1.2∣3−x∣ \textless 1.2
\left \{ {{3-x\ \textless \ 1.2} \atop {3-x\ \textgreater \ -1.2}} \right.{3−x \textgreater −1.23−x \textless 1.2
\left \{ {{-x\ \textless \ 1.2-3} \atop {-x\ \textgreater \ -1.2-3}} \right.{−x \textgreater −1.2−3−x \textless 1.2−3
\left \{ {{-x\ \textless \ -1.8} \atop {-x\ \textgreater \ -4.2}} \right.{−x \textgreater −4.2−x \textless −1.8
\left \{ {{x\ \textgreater \ 1.8} \atop {x\ \textless \ 4.2}} \right.{x \textless 4.2x \textgreater 1.8
(1.8)(4.2)
xx ∈ (1.8;4.2)(1.8;4.2)
4)
|4+x | \leq 1.8∣4+x∣≤1.8
\left \{ {{4+x \leq 1.8} \atop { 4+x \geq -1.8}} \right.{4+x≥−1.84+x≤1.8
71.
1) 0.7√100-1/3√36= 0.7*10-1/3*6=7-6/3=7-2=5
2)√16*√0.25+√5³-4=4*0.5+√125-4=2+√121=2+11=13
3)3√0.81-√9²+12²=3*0.9-√81+144=2.7-√225=2.7-15=-12.3
4)√7 1/9+√3 1/16 - 0.04√90000= √64/9+√49/16-0.04*300=8/3+7/4-12=2 2/3+1 3/4-12
72.
1)(√11)²-√1.44=11-1.2=9.8
2)(2√13)²-(5√8)²=2*13-5*8=26-40=-14
3)14(-1/7√15)²-1/8(2√6)²=14(-1/7*15)-1/8(2*6)=14*(-15/7)-1/8*12=-210/7-12/8=-30-1.5=-31.5
4)√529-(1/2√84)²=23-(1/2*84)=23-84/2=23-42=-19
Объяснение:
71.
1)1*6/3(дробь)=6/3(сокращаем дробь)=2/1(1 не пишем)
/ - обозначение дроби.
Жирные числа - обозначение целых (7(7 целых),3(целых))